PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Bài 7 trang 40 sgk toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.

Số \(a\) là số âm hay dương nếu:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.

LG a.

\(12a < 15a\)?

Phương pháp giải:

Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm.

*) Với ba số \(a, b\) và \(c\) trong đó \(c > 0\), ta có:

Nếu \(a < b\) thì \(ac < bc\); nếu \(a ≤ b\) thì \(ac ≤ bc\);

Nếu \(a > b\) thì \(ac > bc\); nếu \(a ≥ b\) thì \(ac ≥ bc\).

*) Với ba số \(a, b\) và \(c\) trong đó \(c < 0\), ta có:

Nếu \(a < b\) thì \(ac > bc\); nếu \(a ≤ b\) thì \(ac ≥ bc\);

Nếu \(a > b\) thì \(ac < bc\); nếu \(a ≥ b\) thì \(ac ≤ bc\). 

Lời giải chi tiết:

Ta có: \(12 < 15\). Để có bất đẳng thức \(12a < 15a\), ta phải nhân cả hai vế của bất đẳng thức \(12 < 15\) với số \(a\).

Hai bất đẳng thức cùng chiều nên \(a > 0\)

LG b.

\(4a < 3a\)? 

Phương pháp giải:

Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm.

*) Với ba số \(a, b\) và \(c\) trong đó \(c > 0\), ta có:

Nếu \(a < b\) thì \(ac < bc\); nếu \(a ≤ b\) thì \(ac ≤ bc\);

Nếu \(a > b\) thì \(ac > bc\); nếu \(a ≥ b\) thì \(ac ≥ bc\).

*) Với ba số \(a, b\) và \(c\) trong đó \(c < 0\), ta có:

Nếu \(a < b\) thì \(ac > bc\); nếu \(a ≤ b\) thì \(ac ≥ bc\);

Nếu \(a > b\) thì \(ac < bc\); nếu \(a ≥ b\) thì \(ac ≤ bc\). 

Lời giải chi tiết:

Ta có: \(4>3\). Để có bất đẳng thức \(4a<3a\), ta phải nhân cả hai vế của bất đẳng thức \(4>3\) với số \(a\).

Hai bất đẳng thức ngược chiều nên \(a< 0\)


LG c.

\(-3a > -5a\).

Phương pháp giải:

Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm.

*) Với ba số \(a, b\) và \(c\) trong đó \(c > 0\), ta có:

Nếu \(a < b\) thì \(ac < bc\); nếu \(a ≤ b\) thì \(ac ≤ bc\);

Nếu \(a > b\) thì \(ac > bc\); nếu \(a ≥ b\) thì \(ac ≥ bc\).

*) Với ba số \(a, b\) và \(c\) trong đó \(c < 0\), ta có:

Nếu \(a < b\) thì \(ac > bc\); nếu \(a ≤ b\) thì \(ac ≥ bc\);

Nếu \(a > b\) thì \(ac < bc\); nếu \(a ≥ b\) thì \(ac ≤ bc\). 

Lời giải chi tiết:

Ta có: \(-3 >-5\). Để có bất đẳng thức \(-3a > -5a\), ta phải nhân cả hai vế của bất đẳng thức \(-3>-5\) với số \(a\).

Hai bất đẳng thức cùng chiều nên \(a > 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved