1. Nội dung câu hỏi
Tính đạo hàm của các hàm số sau:
a) \(y = 3{x^4} - 7{x^3} + 3{x^2} + 1\);
b) \(y = {\left( {{x^2} - x} \right)^3}\);
c) \(y = \frac{{4{\rm{x}} - 1}}{{2{\rm{x}} + 1}}\)
2. Phương pháp giải
a) Sử dụng công thức tính đạo hàm của một tổng.
b) Sử dụng công thức tính đạo hàm của hàm hợp: \(y{'_x} = y{'_u}.u{'_x}\).
c) Sử dụng công thức tính đạo hàm của một thương.
3. Lời giải chi tiết
a) \(y' = 3.4{{\rm{x}}^3} - 7.3{{\rm{x}}^2} + 3.2{\rm{x}} + 0 = 12{{\rm{x}}^3} - 21{{\rm{x}}^2} + 6{\rm{x}}\);
b) Đặt \(u = {x^2} - x\) thì \(y = {u^3}\). Ta có: \(u{'_x} = {\left( {{x^2} - x} \right)^\prime } = 2{\rm{x}} - 1\) và \(y{'_u} = {\left( {{u^3}} \right)^\prime } = 3{u^2}\).
Suy ra \(y{'_x} = y{'_u}.u{'_x} = 3{u^2}.\left( {2{\rm{x}} - 1} \right) = 3\left( {2{\rm{x}} - 1} \right){\left( {{x^2} - x} \right)^2}\).
Vậy \(y' = 3\left( {2{\rm{x}} - 1} \right){\left( {{x^2} - x} \right)^2}\).
c)
\(y' = \frac{{{{\left( {4{\rm{x}} - 1} \right)}^\prime }\left( {2{\rm{x}} + 1} \right) - \left( {4{\rm{x}} - 1} \right){{\left( {2{\rm{x}} + 1} \right)}^\prime }}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}}\)
\(\begin{array}{l} = \frac{{4\left( {2{\rm{x}} + 1} \right) - \left( {4{\rm{x}} - 1} \right).2}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}}\\ = \frac{{8{\rm{x}} + 4 - 8{\rm{x}} + 2}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}} = \frac{6}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}}\end{array}\)
Unit 14: Recreation - Sự giải trí
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VI - Hóa học 11
Chương 3. Cấu trúc rẽ nhánh và lặp
Bài 9: Tiết 2: Các ngành kinh tế và các vùng kinh tế Nhật Bản - Tập bản đồ Địa lí 11
Test Yourself 4
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11