Bài 7 trang 92 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Trong hệ toạ độ \(Oxyz\), cho điểm \(A(-1 ; 2 ; -3)\), vectơ \(\vec a= (6 ; -2 ; -3)\) và đường thẳng \(d\) có phương trình: \(\left\{ \matrix{x = 1 + 3t \hfill \cr y = - 1 + 2t \hfill \cr z = 3 - 5t. \hfill \cr} \right.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

Viết phương trình mặt phẳng \((α)\) chứa điểm \(A\) và vuông góc với giá của \(\vec a\).

Phương pháp giải:

Viết phương trình mặt phẳng biết điểm đi qua và 1 VTPT.

Lời giải chi tiết:

Mặt phẳng \((α)\) vuông góc với giá của \(\vec a\) nhận \(\vec a\) làm vectơ pháp tuyến; \((α)\) đi qua \(A(-1; 2; -3)\) có phương trình:

\(6(x + 1) - 2(y - 2) - 3(z + 3) = 0\) \( \Leftrightarrow  6x - 2y - 3z + 1 = 0\)

LG b

LG b

Tìm giao điểm của \(d\) và \((α)\).

Phương pháp giải:

Tham số hóa tọa độ giao điểm và thay vào phương trình mặt phẳng \((\alpha)\).

Lời giải chi tiết:

Gọi \(M = d \cap \left( \alpha  \right) \) \(\Rightarrow M \in d\) \( \Rightarrow M\left( {1 + 3t; - 1 + 2t;3 - 5t} \right)\)

Thay tọa độ điểm M vào phương trình \((α)\) ta có:

\(6.(1 + 3t) - 2(-1 + 2t) - 3(3 - 5t) + 1 = 0\) \(⇔ 29t = 0\) \( \Leftrightarrow  t = 0\).

Từ đây ta tính được toạ độ giao điểm \(M\) của \(d\) và \((α)\): \(M(1; -1; 3)\).

LG c

LG c

Viết phương trình đường thẳng \(∆\) đi qua điểm \(A\), vuông góc với giá của \(\vec a\) và cắt đường thẳng \(d\).

Phương pháp giải:

Đường thẳng đi qua A vuông góc với giá của \(\overrightarrow a \) và cắt đường thẳng d chính là đường thẳng AM.

Lời giải chi tiết:

Đường thẳng \(∆\) đi qua A và vuông góc với giá của \(\overrightarrow a \) nên \(\Delta  \subset \left( \alpha  \right)\). Hơn nữa \(∆\) cắt d nên  \(∆\)  đi qua M.

Do đó đường thẳng \(∆\) cần tìm chính là đường thẳng \(AM\) nhận vectơ \(\overrightarrow {AM}  = (2; -3; 6)\) làm vectơ chỉ phương.

Phương trình đường thẳng \(AM\): \(\left\{ \matrix{x = 1 + 2t \hfill \cr y = - 1 - 3t \hfill \cr z = 3 + 6t \hfill \cr} \right.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved