Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Rút gọn các biểu thức sau:
LG a
LG a
\(\left( {\sqrt 8 - 3.\sqrt 2 + \sqrt {10} } \right)\sqrt 2 - \sqrt 5 \)
Phương pháp giải:
Sử dụng công thức:
\(\begin{array}{l}
\sqrt {AB} = \sqrt A .\sqrt B \,\,\left( {A \ge 0,B \ge 0} \right)\\
\sqrt {{A^2}} = \left| A \right|
\end{array}\)
\(\sqrt {\dfrac{A}{B}} = \dfrac{1}{{\left| B \right|}}\sqrt {AB} ;\,\,\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\left( {B > 0} \right)\)
Lời giải chi tiết:
\(\eqalign{
& \left( {\sqrt 8 - 3.\sqrt 2 + \sqrt {10} } \right)\sqrt 2 - \sqrt 5 \cr & ={\sqrt 8.\sqrt 2 - 3.\sqrt 2.\sqrt 2 + \sqrt {10} }.\sqrt 2 - \sqrt 5 \cr
& = \sqrt {16} - 3.2 + \sqrt {20} - \sqrt 5 \cr & = \sqrt {4^2} - 6 + \sqrt {2^2.5} - \sqrt 5 \cr
& = 4 - 6 + 2\sqrt 5 - \sqrt 5 = - 2 + \sqrt 5 \cr} \)
LG b
LG b
\(0,2\sqrt {{{\left( { - 10} \right)}^2}.3} + 2\sqrt {{{\left( {\sqrt 3 - \sqrt 5 } \right)}^2}} \)
Phương pháp giải:
Sử dụng công thức:
\(\begin{array}{l}
\sqrt {AB} = \sqrt A .\sqrt B \,\,\left( {A \ge 0,B \ge 0} \right)\\
\sqrt {{A^2}} = \left| A \right|
\end{array}\)
\(\sqrt {\dfrac{A}{B}} = \dfrac{1}{{\left| B \right|}}\sqrt {AB} ;\,\,\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\left( {B > 0} \right)\)
Lời giải chi tiết:
\(\eqalign{
& 0,2\sqrt {{{\left( { - 10} \right)}^2}.3} + 2\sqrt {{{\left( {\sqrt 3 - \sqrt 5 } \right)}^2}} \cr
& = 0,2\left| { - 10} \right|\sqrt 3 + 2\left| {\sqrt 3 - \sqrt 5 } \right| \cr
& = 0,2.10.\sqrt 3 + 2\left( {\sqrt 5 - \sqrt 3 } \right) \cr
& = 2\sqrt 3 + 2\sqrt 5 - 2\sqrt 3 = 2\sqrt 5 \cr} \)
LG c
LG c
\(\displaystyle \left( {{1 \over 2}.\sqrt {{1 \over 2}} - {3 \over 2}.\sqrt 2 + {4 \over 5}.\sqrt {200} } \right):{1 \over 8}\)
Phương pháp giải:
Sử dụng công thức:
\(\begin{array}{l}
\sqrt {AB} = \sqrt A .\sqrt B \,\,\left( {A \ge 0,B \ge 0} \right)\\
\sqrt {{A^2}} = \left| A \right|
\end{array}\)
\(\sqrt {\dfrac{A}{B}} = \dfrac{1}{{\left| B \right|}}\sqrt {AB} ;\,\,\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\left( {B > 0} \right)\)
Lời giải chi tiết:
\(\eqalign{
& \left( {{1 \over 2}.\sqrt {{1 \over 2}} - {3 \over 2}.\sqrt 2 + {4 \over 5}.\sqrt {200} } \right):{1 \over 8} \cr
& = \left( {{1 \over 2}\sqrt {{2 \over {{2^2}}}} - {3 \over 2}\sqrt 2 + {4 \over 5}\sqrt {{{10}^2}.2} } \right):{1 \over 8} \cr & = \left( {{1 \over 2}{\sqrt 2 \over 2} - {3 \over 2}\sqrt 2 + \dfrac{4}5.10\sqrt 2 } \right):{1 \over 8} \cr
& = \left( {{1 \over 4}\sqrt 2 - {3 \over 2}\sqrt 2 + 8\sqrt 2 } \right):{1 \over 8} \cr & = \left( {{1 \over 4} - {3 \over 2} + 8 } \right).\sqrt 2:{1 \over 8} \cr
& = {{27} \over 4}\sqrt 2 .8 = 54\sqrt 2 \cr} \)
LG d
LG d
\(2\sqrt {{{\left( {\sqrt 2 - 3} \right)}^2}} + \sqrt {2.{{\left( { - 3} \right)}^2}} - 5\sqrt {{{\left( { - 1} \right)}^4}} \)
Phương pháp giải:
Sử dụng công thức: \(\begin{array}{l}
\sqrt {AB} = \sqrt A .\sqrt B \,\,\left( {A \ge 0,B \ge 0} \right)\\
\sqrt {{A^2}} = \left| A \right|
\end{array}\)
\(\sqrt {\dfrac{A}{B}} = \dfrac{1}{{\left| B \right|}}\sqrt {AB} ;\,\,\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\left( {B > 0} \right)\)
Lời giải chi tiết:
\(\eqalign{
& 2\sqrt {{{\left( {\sqrt 2 - 3} \right)}^2}} + \sqrt {2.{{\left( { - 3} \right)}^2}} - 5\sqrt {{{\left( { - 1} \right)}^4}} \cr
& = 2\left| {\sqrt 2 - 3} \right| + \left| { - 3} \right|\sqrt 2 - 5.(-1)^2 \cr
& = 2\left( {3 - \sqrt 2 } \right) + 3\sqrt 2 - 5 \cr } \)
(vì \(\sqrt 2 - 3 < 0)\)
\(= 6 - 2\sqrt 2 + 3\sqrt 2 - 5 = 1 + \sqrt 2\)
Bài 17: Nghĩa vụ bảo vệ Tổ quốc
Đề thi học kì 1 của các trường có lời giải – Mới nhất
Bài 16
Bài 11: Trách nhiệm của thanh niên trong sự nghiệp công nghiệp hoá, hiện đại hoá đất nước
Bài 6. Sự phát triển nền kinh tế Việt Nam