1. Nội dung câu hỏi
Giá đỡ ba chân ở Hình 7.90 đang được mở sao cho ba gốc chân cách đều nhau một khoảng cách bằng 110 cm. Tính chiều cao của giá đỡ, biết các chân của giá đỡ dài 129 cm.
2. Phương pháp giải
- Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên bằng nhau.
- Một hình chóp là đều khi và chỉ khi đáy của nó là một hình đa giác đều và hình chiếu của đỉnh trên mặt phẳng đáy là tâm của mặt đáy.
3. Lời giải chi tiết
Giá đỡ ba chân ở Hình 7.90 đang được mở sao cho ba gốc chân cách đều nhau một khoảng cách bằng 110 cm nên hình chiếu của đỉnh là tâm của đáy mà đáy là tam giác đều do đó tâm là trọng tâm.
Vì đáy là tam giác đều cạnh 110 cm nên chiều cao của đáy bằng \(110.\frac{{\sqrt 3 }}{2} = 55\sqrt 3 \left( {cm} \right)\)
Khoảng cách từ gốc chân đến tâm là \(\frac{2}{3}.55\sqrt 3 = \frac{{110\sqrt 3 }}{3}\left( {cm} \right)\)
Chiều cao giá đỡ là \(\sqrt {{{129}^2} - {{\left( {\frac{{110\sqrt 3 }}{3}} \right)}^2}} = \sqrt {\frac{{37823}}{3}} \approx 112,28\left( {cm} \right)\).
Unit 7: Things that Matter
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Lịch sử lớp 11
Bài 4: Đơn chất nitrogen
Chuyên đề II. Làm quen với một vài yếu tố của lí thuyết đồ thị
Chương V. Giới thiệu chung về cơ khí động lực
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11