SGK Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.30 - Mục Bài tập trang 63

1. Nội dung câu hỏi

Cho khối chóp đều S.ABCD, đáy có cạnh 6 cm. Tính thể tích của khối chóp đó trong các trường hợp sau.

a) Cạnh bên tạo với mặt đáy một góc bằng \({60^0}.\)

b) Mặt bên tạo với mặt đáy một góc bằng \({45^0}.\)


2. Phương pháp giải

- Thế tích khối chóp \(V = \frac{1}{3}h.S\)

- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.

- Góc giữa hai mặt phẳng là góc giữa 2 đường thẳng trong hai mặt phẳng vuông góc với giao tuyến tại cùng một điểm.

 

3. Lời giải chi tiết

a)

 

Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)

\( \Rightarrow \) O là hình chiếu của S trên (ABCD)

C là hình chiếu của C trên (ABCD)

\( \Rightarrow \) OC là hình chiếu của SC trên (ABCD)

\( \Rightarrow \) (SC, (ABCD)) = (SC, OC) \( = \widehat {SCO}\)

Mà cạnh bên tạo với mặt đáy một góc bằng \({60^0}.\)

\( \Rightarrow \widehat {SCO} = {60^0}\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{6^2} + {6^2}}  = 6\sqrt 2 \left( {cm} \right)\)

\( \Rightarrow OC = \frac{{AC}}{2} = \frac{{6\sqrt 2 }}{2} = 3\sqrt 2 \left( {cm} \right)\)

Xét tam giác SOC vuông tại O có

\(\tan \widehat {SCO} = \frac{{SO}}{{OC}} \Rightarrow SO = 6\sqrt 2 .\tan {60^0} = 6\sqrt 6 \left( {cm} \right)\)

\({S_{ABCD}} = {6^2} = 36\left( {c{m^2}} \right)\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.6\sqrt 6 .36 = 72\sqrt 6 \left( {c{m^3}} \right)\)

b)

 

Trong (ABCD) kẻ \(OE \bot CD\)

\(\begin{array}{l}SO \bot CD\left( {SO \bot \left( {ABCD} \right)} \right)\\ \Rightarrow CD \bot \left( {SOE} \right),SE \subset \left( {SOE} \right) \Rightarrow CD \bot SE,OE \bot CD,\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\ \Rightarrow \left( {\left( {SCD} \right),\left( {ABCD} \right)} \right) = \left( {SE,OE} \right) = \widehat {SEO}\end{array}\)

Mà mặt bên tạo với mặt đáy một góc bằng \({45^0}.\)

\( \Rightarrow \widehat {SEO} = {45^0}\)

Ta có \(\left. \begin{array}{l}OE \bot CD\\AD \bot CD\end{array} \right\} \Rightarrow OE//AD\) mà O là trung điểm AC nên OE là đường trung bình tam giác ACD.

\( \Rightarrow OE = \frac{{AD}}{2} = \frac{6}{2} = 3\left( {cm} \right)\)

Xét tam giác SOE vuông tại O có

\(\tan \widehat {SEO} = \frac{{SO}}{{OE}} \Rightarrow SO = 3.\tan {45^0} = 3\left( {cm} \right)\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.3.36 = 36\left( {c{m^3}} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved