1. Nội dung câu hỏi
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, \(AB//CD\) và \(AB = BC = DA = a\), \(CD = 2a\). Biết hai mặt phẳng \((SAC)\) và \((SBD)\) cùng vuông góc với mặt phẳng đáy \((ABCD)\) và \(SA = a\sqrt 2 \). Tính theo \(a\) khoảng cách từ \(S\) đến mặt phẳng \((ABCD)\) và thể tích của khối chóp S.ABCD.
2. Phương pháp giải
Thể tích khối chóp \(V = \frac{1}{3}h.S\)
3. Lời giải chi tiết
Gọi O là giao điểm của AC và BD
Mà \((SAC)\) và \((SBD)\) cùng vuông góc với mặt phẳng đáy \((ABCD)\) nên \(SO \bot \left( {ABCD} \right)\)
Kẻ \(AK \bot DC\) tại K \( \Rightarrow DK = \frac{{DC - AB}}{2} = \frac{a}{2}\)
Xét tam giác ADK vuông tại K có
\(AK = \sqrt {A{D^2} - D{K^2}} = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác AKC vuông tại K có
\(AC = \sqrt {A{K^2} + K{C^2}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{3a}}{2}} \right)}^2}} = a\sqrt 3 \)
Ta có AB // CD nên \(\frac{{OA}}{{OC}} = \frac{{AB}}{{DC}} = \frac{1}{2} \Rightarrow OA = \frac{1}{3}AC = \frac{{a\sqrt 3 }}{3}\)
Xét tam giác SAO vuông tại O có
\(SO = \sqrt {SA{^2} - A{O^2}} = \sqrt {{({a \sqrt 2})^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt {15} }}{3}\)
Diện tích đáy ABCD là:
\(S_{ABCD} = \frac{1}{2} (AB+CD).AK = \frac{1}{2} (a+2a).\frac{{a\sqrt {3} }}{2} = \frac {3a^2\sqrt{3}}{4}\)
Thể tích của khối chóp S.ABCD là:
\(V_{S.ABCD} = \frac {1}{3} .SO.S_{ABCD} = \frac {1}{3}.\frac{{a\sqrt {15} }}{3}.\frac {3a^2\sqrt{3}}{4} = \frac {a^3\sqrt5}{4}\).
Unit 10: Cities of the future
Chương I. Giới thiệu chung về cơ khí chế tạo
CHƯƠNG III. DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
Phần 4. Sinh học cơ thể
CHƯƠNG I. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11