Toán 10 tập 2 - Kết nối tri thức với cuộc sống

Bài 7.5 trang 34

Đề bài

Chứng minh rằng, đường thẳng đi qua hai điểm \(A\left( {a;0} \right),B\left( {0;b} \right)\left( {ab \ne 0} \right)\) có phương trình \(\frac{x}{a} + \frac{y}{b} = 1\)

Phương pháp giải - Xem chi tiết

Viết phương trình tổng quát của AB rồi biến đổi phương trình về dạng cần chứng minh.

Lời giải chi tiết

Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}}  = \left( {b;a} \right)\)

Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến  \(\overrightarrow {{n_{AB}}}  = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved