1. Nội dung câu hỏi
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA \( \bot \) (ABCD). Chứng minh rằng các mặt bên của hình chóp S.ABCD là các tam giác vuông.
2. Phương pháp giải
- Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.
- Định nghĩa đường thẳng vuông góc mặt phẳng.
3. Lời giải chi tiết
\(\begin{array}{l}\left. \begin{array}{l} + )BC \bot AB\left( {hcn\,\,ABCD} \right)\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AB \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right);SB \subset \left( {SAB} \right) \Rightarrow BC \bot SB\\\left. \begin{array}{l} + )CD \bot AD\left( {hcn\,\,ABCD} \right)\\CD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AD \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow CD \bot SD\end{array}\)
Xét tam giác SAB có
\(SA \bot AB\left( {SA \bot \left( {ABCD} \right)} \right)\)
\( \Rightarrow \) Tam giác SAB vuông tại A
Xét tam giác SBC có
\(SB \bot BC\)
\( \Rightarrow \) Tam giác SBC vuông tại B
Xét tam giác SCD có
\(SD \bot CD\)
\( \Rightarrow \) Tam giác SCD vuông tại D
Xét tam giác SAD có
\(SA \bot AD\left( {SA \bot \left( {ABCD} \right)} \right)\)
\( \Rightarrow \) Tam giác SAD vuông tại A.
Chủ đề 4: Hydrocarbon
Chủ đề 3: Quá trình giành độc lập dân tộc của các quốc gia Đông Nam Á
CHƯƠNG III: NHÓM CACBON
Unit 7: Education for school-leavers
Chuyên đề 3: Đọc, viết và giới thiệu về một tác phẩm văn học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11