PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 8 trang 134 SGK Toán 9 tập 2

Đề bài

Cho hai đường tròn \((O; R)\) và \((O'; r)\) tiếp xúc ngoài \((R > r).\) Hai tiếp tuyến chung \(AB\) và \(A'B'\) của hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(P\) (\(A\) và \(A'\) thuộc đường tròn \((O'),\) \(B\) và \(B'\) thuộc đường tròn \((O)\)). Biết \(PA = AB = 4 cm.\) Tính diện tích hình tròn \((O').\) 

Phương pháp giải - Xem chi tiết

+) Sử dụng định lý Ta-lét để tính \(PO'\) theo \(r\)

+) Sử dụng định lý Pytago cho tam giác vuông \(PO'A\)  để tính \({r^2}.\)

+) Diện tích hình tròn \(\left( {O'} \right)\) là \(S = \pi {r^2}.\) 

Lời giải chi tiết

 

Vì \(AB\) là tiếp tuyến chung của \((O)\) và  \((O’)\) nên \(OB \bot AB\) và \(O’A \bot AB\)

Xét hai tam giác \(OPB\) và \(O’AP\), ta có:

\(\widehat A = \widehat B = {90^0}\) 

\(\widehat {{P_1}}\) chung 

Vậy \(ΔOBP \backsim ∆ O’AP (g-g)\)  

\(\eqalign{
& \Rightarrow {r \over R} = {{PO'} \over {PO}} = {{PA} \over {PB}} = {4 \over 8} = {1 \over 2} \cr 
& \Rightarrow R = 2{\rm{r}} \cr} \)

Xét tam giác OBP có: 

O'A // OB ( cùng vuông góc với BP)

AB = AP

\(\Rightarrow\) O'A là đường trung bình của \(∆OBP\))

\(\Rightarrow OO' = O'P=R + r = 3r\) 

Áp dụng định lí Py-ta-go trong tam giác vuông \(O’AP\)

\(O’P^2 = O’A^2 + AP^2\) hay \({\left( {3r} \right)^2} = {\rm{ }}{r^2} + {\rm{ }}{4^{2}} \Leftrightarrow {\rm{ }}9{r^2} = {\rm{ }}{r^2} + {\rm{ }}16{\rm{ }}\)

\( \Leftrightarrow {\rm{ }}8{\rm{ }}{r^2} = 16{\rm{ }} \Leftrightarrow {\rm{ }}{r^2} = {\rm{ }}2\)

Diện tích đường tròn \((O’;r)\) là:

\(S = π. r^2 = π.2 = 2π\) (\(cm^2\))

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved