Bài 8 trang 40 SGK Hình học lớp 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Một hình trụ có hai đáy là hai hình tròn \((O;r)\) và \((O';r)\). Khoảng cách giữa hai đáy là \(OO' = r.\sqrt3\). Một hình nón có đỉnh là \(O'\) và có đáy là hình tròn \((O;r)\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

a) Gọi \(S_1\) là diện tích xung quanh của hình trụ và \(S_2\) là diện tích xung quanh của hình nón, hãy tính tỷ số \({{{S_1}} \over {{S_2}}}\).

Phương pháp giải:

+) Diện tích xung quanh của hình trụ: \({S_{xq}} = 2\pi Rh\) với \(R;h\) lần lượt là bán kính đáy và chiều cao của hình trụ.

+) Diện tích xung quanh của hình nón: \({S_{xq}} = \pi rl\) với \(r;l\) lần lượt là bán kính đáy và độ dài đường sinh của hình nón.

Lời giải chi tiết:

Hình trụ có chiều cao \(l = h = r\sqrt3\) và bán kính đáy \(r\) nên diện tích xung quanh hình trụ là:

\[S_1 = 2πr.h = 2πr.r\sqrt3 = 2\sqrt3 πr^2\]

Với \(M\) là một điểm bất kì thuộc đường tròn \((O)\) thì \(O'M\) là một đường sinh của hình nón ta có: 

\(l' = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{r^2} + {r^2}}  = 2r\)

Hình nón có bán kính đáy \(r\) và độ dài đường sinh \(l=2r\) nên diện tích xung quanh hình nón là:

\[S_2 = πrl'= π.r.2r = 2πr^2\]

Vậy: \({{{S_1}} \over {{S_2}}} = {{2\sqrt 3 \pi {r^2}} \over {2\pi {r^2}}} = \sqrt 3 \)

LG b

b) Mặt xung quanh của hình nón chia khối trụ thành hai phần, hãy tính tỷ số thể tích hai phần đó.

Phương pháp giải:

Mặt xung quanh của hình nón chia khối trụ thành hai phần: Phần dưới là khối nón và phần còn lại.

+) Tính thế tích của khối nón: \({V_1} = \dfrac{1}{3}\pi {r^2}h\) và thể tích của hình trụ: \(V = \pi {r^2}h\)

+) Suy ra thể tích phần còn lại: \({V_2} = V - {V_1}\).

+) Tính tỉ số: \(\dfrac{{{V_1}}}{{{V_2}}}\)

Lời giải chi tiết:

Mặt xung quanh của hình nón chia khối trụ thành hai phần: Phần dưới là khối nón và phần còn lại.

Gọi V là thể tích khối trụ ta có: \(V = \pi {r^2}h\)

Gọi \(V_1\) là thể tích khối nón ta có: \({V_1} = \dfrac{1}{3}\pi {r^2}h\)

Gọi \(V_2\) là thế tích phần còn lại ta có: \({V_2} = V - {V_1} = \pi {r^2}h - \dfrac{1}{3}\pi {r^2}h = \dfrac{2}{3}\pi {r^2}h\)

Vậy tỉ số \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\dfrac{1}{3}\pi {r^2}h}}{{\dfrac{2}{3}\pi {r^2}h}} = \dfrac{1}{2}\).

Cách khác:

Tính trực tiếp như sau:

Thể tích khối trụ là:

\({V_{\text{trụ}}} = \pi {r^2}h = \pi {r^2}.r\sqrt 3  = \pi {r^3}\sqrt 3 \)

Thể tích khối nón là:

\({V_{\text{nón}}} = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {r^2}.r\sqrt 3  = \frac{{\pi {r^3}\sqrt 3 }}{3}\)

Thể tích của khối trụ nằm ngoài khối nón là:

\(V = {V_{\text{trụ}}} - {V_{\text{nón}}} = \pi {r^3}\sqrt 3  - \frac{{\pi {r^3}\sqrt 3 }}{3} = \frac{{2\sqrt 3 }}{3}\pi {r^3}\)

Mặt xung quanh của hình nón chia khối tru thành hai phần, tỉ số thể tích hai phần đó là:

\(\frac{V}{{{V_{\text {nón}}}}} = \frac{{2\sqrt 3 }}{3}\pi {r^3}:\frac{{\pi {r^3}\sqrt 3 }}{3} = 2\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved