PHẦN GIẢI TÍCH - TOÁN 12

Bài 8 trang 44 SGK Giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hàm số \(y = {x^3} + (m + 3){x^2} + 1 - m\) (m là tham số) có đồ thị là (Cm).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

a) Xác định \(m\) để hàm số có điểm cực đại là \(x=-1\).

Phương pháp giải:

Tính \(f'(x)\) và \(f''(x)\) rồi suy ra \(f'(x_0)\) và \(f''(x_0)\)

Hàm số  \(y = f\left( x \right)\) đạt cực đại tại điểm  \(x= {x_0} \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right..\)

Lời giải chi tiết:

\(y = {x^3} + \left( {m + 3} \right){x^2} + 1 - m.\)

Ta có:  \(y' = 3{x^2} + 2\left( {m + 3} \right)x \Rightarrow y'' = 6x + 2\left( {m + 3} \right).\)

Hàm số đạt cực đại tại điểm  \(x =  - 1\) \(\Rightarrow \left\{ \begin{array}{l}y'\left( -1 \right) = 0\\y''\left( -1 \right) < 0\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}3 - 2\left( {m + 3} \right) = 0\\ - 6 + 2\left( {m + 3} \right) < 0\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}m =  - \dfrac{3}{2}\\m < 0\end{array} \right. \Rightarrow m =  - \dfrac{3}{2}.\)

Vậy \(m=-\dfrac{3}{2}.\) thì hàm số đã cho đạt cực đại tại \(x=-1\).

LG b

b) Xác định \(m\) để đồ thị (Cm) cắt trục hoành tại \(x=-2\).

Phương pháp giải:

Đồ thị hàm số cắt trục hoành tại điểm có M hoành độ  \(x = a \Rightarrow M(a;0) \). Thay tọa độ điểm M vào công thức hàm số để tìm m.

Lời giải chi tiết:

Đồ thị hàm số cắt trục hoành tại điểm có M hoành độ  \(x = -2 \Rightarrow M(-2;0) \).

\(\begin{array}{l}\Rightarrow {\left( { - 2} \right)^3} + \left( {m + 3} \right){\left( { - 2} \right)^2} + 1 - m = 0\\ \Leftrightarrow  - 8 + 4\left( {m + 3} \right) + 1 - m = 0\\\Leftrightarrow 4m + 5 - m = 0\\\Leftrightarrow 3m =  - 5\\\Leftrightarrow m =  - \dfrac{5}{3}.\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved