Đề bài
Cho \({h_a}\) là đường cao vẽ từ đỉnh A, R là bán kính đường tròn ngoại tiếp tam giác ABC. Chứng minh hệ thức: \({h_a} = 2R\sin B\sin C.\)
Phương pháp giải - Xem chi tiết
Bước 1: Tính \({h_a}\) theo b và sinC
Bước 2: Tính b theo R và sinB. Từ đó suy ra điều phải chứng minh.
Lời giải chi tiết
Đặt \(a = BC,b = AC,c = AB\)
Ta có: \(\sin C = \frac{{AH}}{{AC}} = \frac{{{h_a}}}{b} \Rightarrow {h_a} = b.\sin C\)
Theo định lí sin, ta có: \(\frac{b}{{\sin B}} = 2R \Rightarrow b = 2R.\sin B\)
\( \Rightarrow {h_a} = 2R.\sin B.\sin C\)
Môn bóng đá - KNTT
Chương 1. Sử dụng bản đồ
Chương 1. Cấu tạo nguyên tử
Chương 5: Thủy quyển
Đề thi giữa kì 2
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10