1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền
2. Hệ thức giữa ba cạnh của tam giác vuông
3. Hệ thức giữa đường cao ứng với cạnh huyền và hình chiếu của hai cạnh góc vuông trên cạnh huyền
4. Hệ thức diện tích
5. Hệ thức giữa đường cao và hai cạnh góc vuông
Bài tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Luyện tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
1. Khái niệm tỉ số lượng giác của một góc nhọn
2. Liên hệ giữa các tỉ số lượng giác của một góc
3. Tỉ số lượng giác của hai góc phụ nhau
4. Tỉ số lượng giác của hai góc đặc biệt
5. Tìm tỉ số lượng giác của các góc đặc biệt
Bài tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Luyện tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Đề bài
Một tam giác vuông có cạnh huyền là 6,15 cm và đường cao tương ứng là 3 cm. Tìm các cạnh góc vuông của tam giác.
Phương pháp giải - Xem chi tiết
Áp dụng hệ thức lượng trong tam giác vuông và định lý Pythagore để lập hệ phương trình.
Lời giải chi tiết
Gọi các cạnh của tam giác vuông đó là a cm và b cm (a, b > 0)
Áp dụng hệ thức lượng trong tam giác vuông và định lý Pythagore ta có hệ phương trình:
\(\left\{ \begin{array}{l}a.b = 6,15.3 = 18,45\\{a^2} + {b^2} = 6,{15^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{{18,45}}{b}\\{\left( {\dfrac{{18,45}}{b}} \right)^2} + {b^2} = 6,{15^2}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{{18,45}}{b}\\{b^4} - 6,{15^2}{b^2} + 18,{45^2} = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{{18,45}}{b}\\\left[ \begin{array}{l}{b^2} = 23,0625\\{b^2} = 14,76\end{array} \right.\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{{18,45}}{b}\\\left[ \begin{array}{l}b = \dfrac{{3\sqrt {41} }}{4}\\b = \dfrac{{3\sqrt {41} }}{5}\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{{3\sqrt {41} }}{5}\\b = \dfrac{{3\sqrt {41} }}{4}\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}a = \dfrac{{3\sqrt {41} }}{4}\\b = \dfrac{{3\sqrt {41} }}{5}\end{array} \right.\)
Vậy các cạnh góc vuông của tam giác đó là \(\dfrac{{3\sqrt {41} }}{4}\,\,cm ;\,\,\dfrac{{3\sqrt {41} }}{5}\,\,cm\)
QUYỂN 3. TRỒNG CÂY ĂN QUẢ
Đề thi vào 10 môn Anh Đồng Nai
CHƯƠNG III. HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Tải 20 đề kiểm tra 15 phút học kì 1 Văn 9
PHẦN MỘT: LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY