1. Nội dung câu hỏi
Tính thể tích của khối chóp cụt lục giác đều \(ABCDEF.{\rm{ }}A'B'C'D'E'F'\) với \(O\) và \(O'\) là tâm hai đáy, cạnh đáy lớn và đáy nhỏ lần lượt là \(a\) và \(\frac{a}{2},OO' = a\).
2. Phương pháp giải
Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right)\).
3. Lời giải chi tiết
Diện tích đáy lớn là: \(S = 6{S_{ABO}} = 6.\frac{{A{B^2}\sqrt 3 }}{4} = \frac{{3{a^2}\sqrt 3 }}{2}\)
Diện tích đáy bé là: \(S' = 6{S_{A'B'O'}} = 6.\frac{{A'B{'^2}\sqrt 3 }}{4} = \frac{{3{a^2}\sqrt 3 }}{8}\)
Thể tích khối chóp cụt lục giác đều là:
\(V = \frac{1}{3}.a\left( {\frac{{3{a^2}\sqrt 3 }}{2} + \sqrt {\frac{{3{a^2}\sqrt 3 }}{2}.\frac{{3{a^2}\sqrt 3 }}{8}} + \frac{{3{a^2}\sqrt 3 }}{8}} \right) = \frac{{3{a^3}\sqrt 3 }}{8}\)
CHƯƠNG II. CẢM ỨNG
SGK Toán 11 - Kết nối tri thức với cuộc sống tập 1
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Toán lớp 11
SGK Toán 11 - Chân trời sáng tạo tập 2
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Địa lí lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11