Bài 8 trang 94 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho đường tròn (O; r) có đường kính AB. Lấy trên cung AB hai điểm C, D sao cho các tia AC, BD cắt nhau tại điểm M ở ngoài đường tròn. Vẽ đường tròn (O’) qua M, C, D. Chứng minh MO’ vuông góc với AB.

Phương pháp giải - Xem chi tiết

+) Vẽ đường kính MI của đường tròn \(\left( {O'} \right)\).

+) Chứng minh IC và BC cùng vuông góc với MC, suy ra B; I; C thẳng hàng, BC là đường cao của tam giác ABC.

+) Chứng minh tương tự A; I; D thẳng hàng, AD là đường cao của tam giác ABC.

+) Chứng minh I là trực tâm của tam giác ABC, từ đó suy ra điều phải chứng minh.

Lời giải chi tiết

 

 

Vẽ đường kính MI của đường tròn \(\left( {O'} \right)\).

Xét đường tròn \(\left( {O'} \right)\) ta có \(\widehat {MCI}\) là góc nội tiếp chắn nửa đường tròn \( \Rightarrow \widehat {MCI} = {90^0} \Rightarrow IC \bot MC\)

Xét đường tròn \(\left( O \right)\) ta có \(\widehat {ACB}\) là góc nội tiếp chắn nửa đườn tròn \( \Rightarrow \widehat {ACB} = {90^0} \Rightarrow BC \bot AC\)hay \(BC \bot MC\).

Theo tiên đề Ơ-lít ta có B; I; C thẳng hàng, BC là đường cao của tam giác ABC.

Chứng minh hoàn toàn tương tự ta có A; I; D thẳng hàng, AD là đường cao của tam giác ABC.

\(BC \cap AD = I \Rightarrow I\) là trực tâm của tam giác ABC \( \Rightarrow MI \bot AB\).

Mà \(O' \in MI \Rightarrow MO' \bot AB\).

Vậy \(MO' \bot AB\) (đpcm).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved