Đề bài
Trong khai triển nhị thức Newton của\({(2x + 3)^5}\) , hệ số của \({x^4}\) hay hệ số của \({x^3}\) lớn hơn?
Phương pháp giải - Xem chi tiết
Áp dụng công thức khai triển của \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)
Lời giải chi tiết
Ta có:
\({(2x + 3)^5} = 32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243\)
Hệ số của \({x^3}\) là 720
Hệ số của \({x^4}\) là 240.
Vậy hệ số của \({x^3}\) lớn hơn hệ số của \({x^4}\).
Chủ đề 1. Máy tính và xã hội tri thức
Unit 4: Home sweet home
Unit 4: For a Better Community
Phần 3. Sinh học vi sinh vật và virus
Unit 7: Inventions
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10