Bài 83 trang 136 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Trong không gian tọa độ Oxyz cho đường thẳng:

\(d:\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 + t \hfill \cr  z = 2 - t. \hfill \cr}  \right.\)

Gọi d’ là giao tuyến của hai mặt phẳng

\(\left( \alpha  \right):3y - z - 7 = 0\) và \(\left( {\alpha '} \right):3x + 3y - 2z - 17 = 0.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Chứng minh d, d’ chéo nhau và vuông góc với nhau.

Lời giải chi tiết:

Đường thẳng d' là giao tuyến của hai mặt phẳng có vectơ pháp tuyến là \(\overrightarrow n \) = (0 ; 3 ; -1) và \(\overrightarrow {n'} \)  = (3 ; 3 ; -2) nên d' có một vectơ chỉ phương là :

\(\overrightarrow {{u_{d'}}}  =  - {1 \over 3}\left[ {\overrightarrow n ,\overrightarrow {n'} } \right] = \left( {1;1;3} \right).\)

Vectơ chỉ phương \(\overrightarrow {{u_d}} \) của d là \(\overrightarrow {{u_d}} \) = (2 ; 1 ; -1).

Vì \(\overrightarrow {{u_d}} .\overrightarrow {{u_{d'}}}  = 0\) nên \(d \bot d'.\)

Ta dễ chứng minh d và d' không có điểm chung (hệ phương trình lập ra từ phương trình hai đường thẳng này vô nghiệm). Vậy chúng chéo nhau.

LG b

Viết phương trình mặt phẳng (P) đi qua d’ và vuông góc với d . Tìm tọa độ giao điểm H của d và (P).

Lời giải chi tiết:

Ta lấy một điểm A nào đó thuộc \(d'\). Chẳng hạn cho y = 0 thì z = -7, x = 1, ta có \(A\left( {1{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }} - 7} \right) \in d'.\). Vì d\( \bot \) d' nên mặt phẳng đi qua A và vuông góc với d sẽ đi qua \(d'\). Vậy phương trình mặt phẳng (P) là :

\( 2(x - 1) + (y - 0) - (z + 7) = 0\)

\( \Leftrightarrow  2x + y- z- 9 = 0.\)

Toạ độ giao điểm H(x ; y ; z) của d và (P) thoả mãn hệ

\(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 + t \hfill \cr  z = 2{\rm{  -  }}t \hfill \cr  2x + y - z - 9 = 0 \hfill \cr}  \right. \)

\(\Rightarrow t = {5 \over 3} \Rightarrow H = \left( {{{13} \over 3};{2 \over 3};{1 \over 3}} \right).\)

LG c

Một mặt phẳng (Q) thay đổi, luôn song song với mặt phẳng (Oxy), cắt d, d’ lần lượt tại M, M’. Tìm quỹ tích trung điểm I của đoạn MM’.

Lời giải chi tiết:

Mặt phẳng (Q) song song với mp(Oxy) nên có phương trình

                         z = m (m\( \ne \)0).

Toạ độ giao điểm M(x ; ỵ ; z) của d và (Q) thoả mãn hệ

\(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 + t \hfill \cr  z = 2 - t \hfill \cr  z = m \hfill \cr}  \right. \Rightarrow M = \left( {5 - 2m;1 - m;m} \right).\)

Toạ độ giao điểm \(M'\)(x ; ỵ ; z) của \(d'\) và (Q) thoả mãn hệ

\(\left\{ \matrix{  3y - z - 7 = 0 \hfill \cr  3x + 3y - 2z - 17 = 0 \hfill \cr  z = m \hfill \cr}  \right. \)

\(\Rightarrow M' = \left( {{{10 + m} \over 3};{{7 + m} \over 3};m} \right).\)

Gọi I là trung điểm của \(MM'\)  thì \(I = \left( {{{25 - 5m} \over 6};{{5 - m} \over 3};m} \right).\)

Vậy quỹ tích của I là đường thẳng có phương trình tham số

\(\left\{ \matrix{  x = {{25 -5 m} \over 6} \hfill \cr  x = {{5 - m} \over 3} \hfill \cr  z = m \hfill \cr}  \right.;\)

bỏ đi điểm \(\left( {{{25} \over 6};{5 \over 3};0} \right)\) (ứng với m = 0).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved