PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 84 trang 99 sgk Toán lớp 9 tập 2

Đề bài

a) Vẽ lại hình tạo bởi các cung tròn xuất phát từ đỉnh \(C\) của tam giác đều \(ABC\) cạnh \(1 cm\). Nêu cách vẽ (h.63).

b) Tính diện tích miền gạch sọc.

Phương pháp giải - Xem chi tiết

+) Sử dụng compa và thước thẳng để vẽ hình.

+) Áp dụng công thức tính diện tích cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(S = \dfrac{{\pi {R^2}n}}{{360}}.\)

+) Áp dụng diện tích hình tròn bán kính \(R\) là \(S= \pi R^2\) 

Lời giải chi tiết

 

a) Vẽ tam giác đều \(ABC\) cạnh \(1cm\)

Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(A\), bán kính \(1cm\), ta được cung \(\overparen{CD}\)

Vẽ cung \(\overparen{DE}\) của đường tròn tâm \(B\), bán kính \(2cm\) sao cho \(\widehat {DBE} =120^0\)

Vẽ cung \(\overparen{EF}\) của đường tròn tâm \(C\), bán kính \(3cm\) sao cho \(\widehat {ECF} =120^0\)

b) Diện tích hình quạt \(CAD\) là \(\dfrac{1}{3}\) \(π.1^2\)

Diện tích hình quạt \(DBE\) là \(\dfrac{1}{3}\) \(π.2^2\) 

Diện tích hình quạt \(ECF\) là \(\dfrac{1}{3}\) \(π.3^2\)

Diện tích phần gạch sọc là  \(\dfrac{1}{3}.π.1^2+ \dfrac{1}{3}.π.2^2 +\dfrac{1}{3}.π.3^2\)

\(=\dfrac{1}{3}\) \(π (1^2 + 2^2 + 3^2) = \dfrac{14}{3}π\) (\(cm^2\))

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved