Bài 1. Mở đầu về phương trình
Bài 2. Phương trình bậc nhất một ẩn và cách giải
Bài 3. Phương trình đưa được về dạng ax + b = 0
Bài 4. Phương trình tích
Bài 5. Phương trình chứa ẩn ở mẫu
Bài 6. Giải bài toán bằng cách lập phương trình
Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
Ôn tập chương III. Phương trình bậc nhất một ẩn
Giải các phương trình sau, viết số gần đúng của mỗi nghiệm ở dạng số thập phân bằng cách làm tròn đến hàng phần trăm:
LG a.
\(3x - 11 = 0\);
Phương pháp giải:
Phương trình \(ax+b=0\) (với \(a\ne0\)) được giải như sau:
\(ax + b = 0 \Leftrightarrow ax = -b \Leftrightarrow x = \dfrac{-b}{a}\)
Vậy phương trình có một nghiệm duy nhất là \(x= \dfrac{-b}{a} \)
Lời giải chi tiết:
\(3x -11 = 0\)
\( \Leftrightarrow 3x = 11\)
\( \Leftrightarrow x = \dfrac{11}{3}\)
\( \Leftrightarrow x \approx 3, 67\)
Vậy nghiệm gần đúng của phương trình là \(x \approx 3,67\).
LG b.
\(12 + 7x = 0\);
Phương pháp giải:
Phương trình \(ax+b=0\) (với \(a\ne0\)) được giải như sau:
\(ax + b = 0 \Leftrightarrow ax = -b \Leftrightarrow x = \dfrac{-b}{a}\)
Vậy phương trình có một nghiệm duy nhất là \(x= \dfrac{-b}{a} \)
Lời giải chi tiết:
\(12 + 7x = 0\)
\( \Leftrightarrow 7x = -12 \)
\( \Leftrightarrow x = \dfrac{-12}{7}\)
\( \Leftrightarrow x \approx -1,71\)
Vậy nghiệm gần đúng của phương trình là \(x \approx - 1,71\).
LG c.
\(10 - 4x = 2x - 3\).
Phương pháp giải:
Sử dụng:
+) Quy tắc chuyển vế
Trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.
+) Quy tắc nhân với một số
Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế phương trình với cùng một số khác \(0\).
Lời giải chi tiết:
\(10 - 4x = 2x - 3\)
\( \Leftrightarrow -4x - 2x = -3 - 10\)
\( \Leftrightarrow -6x = -13\)
\( \Leftrightarrow x = \dfrac{-13}{-6}\)
\( \Leftrightarrow x \approx 2,17\)
Vậy nghiệm gần đúng của phương trình là \(x \approx 2,17\).
Thể thao tự chọn
Chương I. Phản ứng hóa học
Unit 8. Traditions of ethnic groups in Vietnam
CHƯƠNG IV: HÔ HẤP
Bài 3. Lao động cần cù, sáng tạo
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8