Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho tam giác \(ABC\) nội tiếp đường tròn \((O'\)) và ngoại tiếp đường tròn \((O)\). Tia \(AO\) cắt đường tròn \((O')\) tại \(D\). Ta có:
(A) \(CD = BD = O'D\) ; (B) \(AO = CO = OD\)
(C) \(CD = CO = BD\) ; (D) \(CD = OD = BD\)
Hãy chọn câu trả lời đúng.
Phương pháp giải - Xem chi tiết
+ Sử dụng hai góc nội tiếp bằng nhau chắn hai cung bằng nhau
+ Sử dụng tính chất tam giác cân
Lời giải chi tiết
Vì \(AC\) và \(BC\) tiếp xúc với đường tròn \((O)\), \(AD\) đi qua \(O\) nên ta có AD là phân giác góc BAC (vì tâm đường tròn nội tiếp trong tam giác là giao điểm của ba đường phân giác trong tam giác)
Nên \(\widehat {CA{\rm{D}}} = \widehat {BA{\rm{D}}} = \alpha\)
Lại có \(\widehat {CA{\rm{D}}}\) là góc nội tiếp chắn cung CD, \(\widehat {BA{\rm{D}}}\) là góc nội tiếp chắn cung BD
\(⇒\) \(\overparen{CD}=\overparen{DB}\) (hai góc nội tiếp bằng nhau chắn hai cung bằng nhau)
\(⇒CD = DB\) (*) (hai cung bằng nhau căng 2 dây bằng nhau)
Tương tự, \(CO\) là tia phân giác của góc \(C\) nên:
\(\widehat {AC{\rm{O}}} = \widehat {BCO} = \beta .\)
Mặt khác: \(\widehat {DCO} = \widehat {DCB} + \widehat {BCO} = \alpha + \beta \, \,(1)\) (do \(\widehat {BA{\rm{D}}} = \widehat {BC{\rm{D}}}\))
Ta có: \(\widehat {CO{\rm{D}}}\) là góc ngoài của \(∆ AOC\) nên
\(\widehat {CO{\rm{D}}} = \widehat {OAC} + \widehat {OC{\rm{A}}} = \beta + \alpha \, \, (2)\)
Từ (1) và (2) ta có: \(\widehat {OC{\rm{D}}} = \widehat {CO{\rm{D}}}\)
Vậy \(∆DOC\) cân tại \(D\) (2*)
Từ (*) và (2*) suy ra \(CD = OD = BD.\)
Chọn đáp án \(D\).
Unit 7: Recipes and eating habits
Nghị luận xã hội
Bài 15. Thương mại và du lịch
Bài 13
Đề thi, đề kiểm tra học kì 1 - Địa lí 9
Đề thi, đề kiểm tra Toán Lớp 9
Bài giảng ôn luyện kiến thức môn Toán lớp 9
Đề thi vào Lớp 10 môn Toán
SBT Toán Lớp 9
Tài liệu Dạy - học Toán Lớp 9
Vở bài tập Toán Lớp 9