Đề bài
Cho hình chóp tứ giác đều , đáy là hình vuông cạnh , cạnh bên tạo với đáy một góc . Gọi là trung điểm . Mặt phẳng đi qua và song song với , cắt tại và cắt tại . Tính thể tích khối chóp .
Hình chóp đều có chân đường cao trùng với tâm của đáy.
Xác định thiết diện của hình chóp cắt bởi mặt phẳng đi qua và song song với là tức giác
Chứng minh có hai đường chéo vuông góc
Chứng minh
Lời giải chi tiết

Gọi .
Hình chóp là hình chóp đều nên chân của đường cao chính là tâm của đáy.
Mặt phẳng đi qua và song song với cắt mặt phẳng theo một giao tuyến song song với \. Ta dựng giao tuyến như sau: Gọi là giao điểm của và . Qua ta dựng một đường thẳng song song với , đường này cắt ở và cắt ở .
Ta có: là hình chiếu vuông góc của trên
Tam giác cân có và góc nên nó là tam giác đều: là giao điểm của các trung tuyến và nên là trọng tâm của tam giác đều
Do
Vì
Tam giác là tam giác đều nên
Ta lại có
Tứ giác có hai đường chéo vuông góc với nhau nên có diện tích:
Mặt khác, tam giác là tam giác đều, là trung điểm của nên . Ta cũng có vì nên . Từ kết quả trên, suy ra .
Dễ thấy (do tam giác đều). Do đó: .