1. Nội dung câu hỏi
Tinh đạo hàm của các hàm số sau:
a) \(y = \tan \left( {{e^x} + 1} \right)\);
b) \(y = \sqrt {\sin 3x} \);
c) \(y = \cot \left( {1 - {2^x}} \right)\).
2. Phương pháp giải
Sử dụng công thức tính đạo hàm của hàm hợp: \(y{'_x} = y{'_u}.u{'_x}\).
3. Lời giải chi tiết
a) Đặt \(u = {e^x} + 1\) thì \(y = \tan x\). Ta có: \(u{'_x} = {\left( {{e^x} + 1} \right)^\prime } = {e^x}\) và \(y{'_u} = {\left( {\tan u} \right)^\prime } = \frac{1}{{{{\cos }^2}u}}\).
Suy ra \(y{'_x} = y{'_u}.u{'_x} = \frac{1}{{{{\cos }^2}u}}.{e^x} = \frac{{{e^x}}}{{{{\cos }^2}\left( {{e^x} + 1} \right)}}\).
Vậy \(y' = \frac{{{e^x}}}{{{{\cos }^2}\left( {{e^x} + 1} \right)}}\).
b) Đặt \(u = \sin 3{\rm{x}}\) thì \(y = \sqrt u \). Ta có: \(u{'_x} = {\left( {\sin 3{\rm{x}}} \right)^\prime } = 3\cos 3{\rm{x}}\) và \(y{'_u} = {\left( {\sqrt u } \right)^\prime } = \frac{1}{{2\sqrt u }}\).
Suy ra \(y{'_x} = y{'_u}.u{'_x} = \frac{1}{{2\sqrt u }}.3\cos 3{\rm{x}} = \frac{{3\cos 3{\rm{x}}}}{{2\sqrt {\sin 3{\rm{x}}} }}\).
Vậy \(y' = \frac{{3\cos 3{\rm{x}}}}{{2\sqrt {\sin 3{\rm{x}}} }}\).
c) Đặt \(u = 1 - {2^x}\) thì \(y = \cot u\). Ta có: \(u{'_x} = {\left( {1 - {2^x}} \right)^\prime } = - {2^x}\ln 2\) và \(y{'_u} = {\left( {\cot u} \right)^\prime } = - \frac{1}{{{{\sin }^2}u}}\).
Suy ra \(y{'_x} = y{'_u}.u{'_x} = - \frac{2}{{{{\sin }^2}u}}.\left( { - {2^x}\ln 2} \right) = \frac{{{2^{x + 1}}\ln 2}}{{{{\sin }^2}\left( {1 - {2^x}} \right)}}\).
Vậy \(y' = \frac{{{2^{x + 1}}\ln 2}}{{{{\sin }^2}\left( {1 - {2^x}} \right)}}\).
Chủ đề 2. Sóng
Chuyên đề 3: Dầu mỏ và chế biến dầu mỏ
Giáo dục pháp luật
Unit 6: High-flyers
Unit 12: The Asian Games - Đại hội thể thao Châu Á
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11