Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). Trong mặt phẳng đáy vẽ đường thẳng \(d\) đi qua \(A\) và không song song với các cạnh của hình bình hành, \(d\) cắt đoạn \(BC\) tại \(E\). Gọi \(C'\) là một điểm nằm trên cạnh \(SC\)
a) Tìm giao điểm \(M\) của \(CD\) và mặt phẳng \((C'AE)\)
b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng \((C'AE)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Tìm giao điểm của CD và một đường thẳng nằm trong mặt phẳng \((C'AE)\) - ktra các đường thẳng có sẵn trước như \(AE, AC', EC'\)
b) Tìm giao tuyến của mặt phẳng \((C'AE)\) với tất cả các mặt của hình chóp.
Để tìm giao tuyến của 2 mặt phẳng, ta tìm 2 điểm chung của hai mp ấy.
Lời giải chi tiết
a) Trong \((ABCD)\) gọi \(M = AE ∩ DC \Rightarrow M ∈ AE\)
\(AE ⊂ ( C'AE) \Rightarrow M ∈ ( C'AE)\).
Mà \(M ∈ CD \Rightarrow M = DC ∩ (C'AE)\)
b) Trong \((SDC) : MC' ∩ SD = F\).
\( \Rightarrow \left\{ \begin{array}{l}
F \in MC' \subset \left( {C'AE} \right)\\
F \in SD \subset \left( {SDC} \right)
\end{array} \right. \) \(\Rightarrow F \in \left( {C'AE} \right) \cap \left( {SDC} \right)\)
Mà \(C' \in \left( {C'AE} \right) \cap \left( {SCD} \right) \) \(\Rightarrow C'F = \left( {C'AE} \right) \cap \left( {SCD} \right)\)
Ta có:\(\left\{ \begin{array}{l}\left( {C'AE} \right) \cap \left( {ABCD} \right) = AE\\\left( {C'AE} \right) \cap \left( {SAD} \right) = AF\\\left( {C'AE} \right) \cap \left( {SBC} \right) = C'E\\\left( {C'AE} \right) \cap \left( {SCD} \right) = C'F\end{array} \right. \)
\(\Rightarrow \) thiết diện của hình chóp khi cắt bởi mặt phẳng \((C'AE)\) là tứ giác \(AEC'F\).
Đề thi học kì 1
Chuyên đề 2. Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
ĐỀ KIỂM TRA HỌC KÌ 2 (ĐỀ THI HỌC KÌ 2) - VẬT LÍ 11
Chuyên đề 3. Mở đầu điện tử học
SBT tiếng Anh 11 mới tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11