PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

Bài 9 trang 63 - Sách giáo khoa toán 8 tập 2

Đề bài

Cho tam giác \(ABC\) và điểm \(D\) trên cạnh \(AB\) sao cho \(AD= 13,5cm, DB= 4,5cm\). Tính tỉ số các khoảng cách từ điểm \(D\) và \(B\) đến cạnh \(AC\).

Phương pháp giải - Xem chi tiết

Áp dụng: Hệ quả của định lý TaLet.

Lời giải chi tiết

 

Gọi \(DH\) và \(BK\) lần lượt là khoảng cách từ \(B\) và \(D\) đến cạnh \(AC\).

Ta có \(DH // BK\) (vì cùng vuông góc với \(AC\))

\( \Rightarrow \dfrac{DH}{BK} = \dfrac{AD}{AB}\) (theo hệ quả định lý Ta Let)

Mà \(AB = AD + DB\) (giả thiết)

\( \Rightarrow  AB = 13,5 + 4,5 = 18\) (cm)

Vậy \(\dfrac{DH}{BK} = \dfrac{13,5}{18} = \dfrac{3}{4}\)

Vậy tỉ số khoảng cách từ điểm \(D\) và \(B\) đến \(AC\) bằng \(\dfrac{3}{4}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved