PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 9 trang 71 SGK Toán 8 tập 1

Đề bài

Tứ giác \(ABCD\) có \(AB= BC\) và \(AC\) tia phân giác của góc \(A\). Chứng minh rằng \(ABCD\) là hình thang.

Phương pháp giải - Xem chi tiết

Áp dụng:

- Dấu hiệu nhận biết hình thang: Hình thang là tứ giác có hai cạnh đối song song.

- Chứng minh hai đường thẳng song song ta chứng minh cặp góc so le trong bằng nhau.

Lời giải chi tiết

 

Ta có \(AB = BC\) (giả thiết)

Suy ra  \(∆ABC\) cân tại \(B\) (định nghĩa tam giác cân)

Nên \(\widehat{A_{1}}=\widehat{C_{1}}\) (1) (tính chất tam giác cân) 

Lại có, \(AC\) là tia phân giác của \(\widehat{A}\) (giả thiết) nên suy ra \(\widehat{A_{1}}= \widehat{A_{2}}\) (2) (tính chất tia phân giác )

Từ (1) và (2) suy ra \(\widehat{C_{1}}=\widehat{A_{2}}\) mà hai góc này ở vị trí so le trong nên \(BC // AD\) (Dấu hiệu nhận biết hai đường thẳng song song)

Vậy tứ giác \(ABCD\) là hình thang.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved