CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

Bài 9 trang 74 Tài liệu dạy – học Toán 9 tập 1

Đề bài

Cho tứ giác ABCD có AB = AC = AD = 20 cm, góc B bằng \({60^o}\) và góc A bằng \({90^o}\).

a) Tính đường chéo BD.

b) Tính khoảng cách BH và DK từ hai điểm B và D đến AC.

c) Vẽ BE vuông góc với DC kéo dài. Tính BE, CE, DC.

Phương pháp giải - Xem chi tiết

a) Áp dụng định lý Pythagore vào tam giác ABD vuông tại A để tính BD

b) Tính góc BAC và CAD từ dữ kiện đề bài từ đó sử dụng các hệ thức lượng giác để tính.

c) Tính góc BCE từ đó sử dụng các hệ thức lượng giác để tính BE, CE. Sử dụng định lý Pythagore tính ED từ đó suy ra CD.

Lời giải chi tiết

 

a) Tính đường chéo BD.

Áp dụng định lý Pythagore vào tam giác ABD vuông tại A:

\(B{D^2} = A{B^2} + A{D^2}\)\(\, = {20^2} + {20^2} = {2.20^2}\)

\(\Rightarrow BD = 20\sqrt 2 \) (cm)

b) Tính khoảng cách BH và DK từ hai điểm B và D đến AC.

Ta có AC = AB (gt) \( \Rightarrow \)\(\Delta \) ABC cân tại A mà góc B bằng \({60^o}\) \( \Rightarrow \)\(\Delta \) ABC đều

\( \Rightarrow \)\(\widehat {BAC} = {60^o}\)

Xét \(\Delta \)BHA vuông tại H, ta có:

\(\sin \left( {\widehat {BAC}} \right) = \dfrac{{BH}}{{AB}}\)

\(\Rightarrow BH = AB.\sin \left( {\widehat {BAC}} \right) \)\(\,= 20.\sin {60^o} = 10\sqrt 3 \) (cm)

Lại có \(\widehat {BAC} + \widehat {CAD} = \angle BAD\)

\(\Rightarrow \widehat{ CAD }= \widehat {BAD} - \widehat {BAC} \)\(\,= {90^o} - {60^o} = {30^o}\)

Xét \(\Delta \) DKA vuông tại K, ta có:

\(\sin \left( {\widehat {DAK}} \right) = \dfrac{{DK}}{{AD}}\)

\(\Rightarrow DK = AD.\sin \left( {\widehat {DAK}} \right)\)\(\, = 20.\sin {30^o} = 10\) (cm)

c) Vẽ BE vuông góc với DC kéo dài. Tính BE, CE, DC.

Ta có: AC = AD (gt) \( \Rightarrow \)\(\Delta \)ACD cân tại A \( \Rightarrow \)\(\widehat {ACD} = \widehat {ADC}\)

Theo định lý tổng 3 góc trong tam giác ACD có:

\(\widehat {DAC} + \widehat {ACD} + \widehat {ADC} = {180^o}\)hay \({30^o} + \widehat {ACD} + \widehat {ACD} = {180^o}\)

\(\Rightarrow \widehat {ACD} = {75^o}\)

Có \(\Delta \)ABC đều (cmt) \( \Rightarrow \)\(\widehat {ACB} = {60^o}\); BC = AB = AD = 20 cm

Lại có \(\widehat {ACD} + \widehat {ACB} + \widehat {BCE} = {180^o}\)

\(\Rightarrow \widehat {BCE} = {180^o} - \widehat {ACD} - \widehat {ACB}\)\(\, = {180^o} - {75^o} - {60^o} = {45^o}\)

\( \Rightarrow \Delta \)BEC vuông cân tại E.

 

Xét \(\Delta \)BEC vuông cân tại E, ta có:

\(\sin \left( {\widehat {BCE}} \right) = \dfrac{{BE}}{{BC}}\)

\(\Rightarrow BE = BC.\sin \left( {\widehat {BCE}} \right) \)\(\,= 20.\sin {45^o} = 10\sqrt 2 \) (cm)

CE = BE = \(10\sqrt 2 \) cm

Áp dụng định lý Pythagore vào tam giác BDE vuông tại E:

\(E{D^2} = B{D^2} - B{E^2}\)\(\, = {2.20^2} - {\left( {10\sqrt 2 } \right)^2} = 600 \)

\(\Rightarrow ED = 10\sqrt 6 \) (cm)

\( \Rightarrow CD = ED - EC = 10\sqrt 6  - 10\sqrt 2\)\(\,  = 10\left( {\sqrt 6  - \sqrt 2 } \right)\)  (cm)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved