1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền
2. Hệ thức giữa ba cạnh của tam giác vuông
3. Hệ thức giữa đường cao ứng với cạnh huyền và hình chiếu của hai cạnh góc vuông trên cạnh huyền
4. Hệ thức diện tích
5. Hệ thức giữa đường cao và hai cạnh góc vuông
Bài tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Luyện tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
1. Khái niệm tỉ số lượng giác của một góc nhọn
2. Liên hệ giữa các tỉ số lượng giác của một góc
3. Tỉ số lượng giác của hai góc phụ nhau
4. Tỉ số lượng giác của hai góc đặc biệt
5. Tìm tỉ số lượng giác của các góc đặc biệt
Bài tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Luyện tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Đề bài
Cạnh huyền của một tam giác vuông lớn hơn một cạnh góc vuông của tam giác là 9 cm, còn tổng hai cạnh góc vuông lớn hơn cạnh huyền là 6 cm. Tính chu vi và diện tích tam giác vuông đó.
Phương pháp giải - Xem chi tiết
Áp dụng định lý Pythagore và dữ kiện đề bài lập hệ phương trình tính.
Lời giải chi tiết
Gọi hai cạnh góc vuông và cạnh huyền của tam giác vuông đó lần lượt là a cm, b cm, c cm (a, b, c > 0)
Cạnh huyền của một tam giác vuông lớn hơn một cạnh góc vuông của tam giác là 9 cm
\( \Rightarrow c - a = 9 \Leftrightarrow c = 9 + a\)
Tổng hai cạnh góc vuông lớn hơn cạnh huyền là 6 cm
\( \Rightarrow a + b - c = 6\\ \Leftrightarrow a + b - \left( {9 + a} \right) = 6\\ \Leftrightarrow b = 15\;cm\)
Áp dụng định lý Pythagore ta có:
\({a^2} + {b^2} = {c^2}\\ \Leftrightarrow {a^2} + {15^2} = {\left( {9 + a} \right)^2}\\ \Leftrightarrow {a^2} + {15^2} = 81 + 18a + {a^2}\)
\( \Leftrightarrow 18a = 144 \Rightarrow a = 8\,\,cm\\ \Rightarrow c = 9 + a = 17\,cm\)
Chu vi tam giác vuông đó là: \(a + b + c = 8 + 15 + 17 = 40\,(cm)\)
Diện tích tam giác vuông đó là: \(\dfrac{{a.b}}{2} = \dfrac{{8.15}}{2} = 60\,(c{m^2})\)