Chương 9. Quan hệ giữa các yếu tố trong một tam giác

Bài 9.26 trang 60 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

Đề bài

Cho C là trung điểm của đoạn thẳng AB. Gọi Ax, By là hai đường thẳng vuông góc với AB tại A và tại B. Một đường thẳng qua C cắt Ax tại M, cắt By tại P. Điểm N nằm trên tia đối của tia BP sao cho góc MCN là góc vuông. Gọi H là hình chiếu của C trên MN.

Chứng minh:

a)AM + BN = MN;

b) CM là đường trung trực của AH, CN là đường trung trực của BH;

c) Góc AHB là góc vuông.

Phương pháp giải - Xem chi tiết

a)

-Chứng minh AM = MH: \(\Delta AMC = \Delta HMC\)

-Chứng minh:NB = NH:\(\Delta CHN = \Delta CBN\left( {ch - gn} \right)\)

b)Áp dụng kết quả ý a

c)Trong tam giác đường trung tuyến ứng với 1 cạnh và bằng nửa cạnh đó thì tam giác đó là tam giác vuông 

Lời giải chi tiết

 

a)

-Chứng minh AM = MH

Xét \(\Delta AMC\) và \(\Delta BPC\) có:

AC = CB (gt)

\(\widehat {MAC} = \widehat {PBC} = {90^0}\)

\(\widehat {ACM} = \widehat {BCP}\)(đối đỉnh)

\( \Rightarrow \)\(\Delta AMC\) = \(\Delta BPC\)(g – c – g)

\( \Rightarrow \) MC = CP (cạnh tương ứng)

Mà \(NC \bot MP\)

\( \Rightarrow \)NC là đường trung trực của MP

\( \Rightarrow \)Tam giác NMP cân tại N

\( \Rightarrow \)\(\widehat {{P_1}} = \widehat {{M_2}}\)

Mà \(\widehat {{P_1}} = \widehat {{M_1}}\)(so le trong: Mx // By)

\( \Rightarrow \widehat {{M_1}} = \widehat {{M_2}}\)

Xét \(\Delta AMC\) và \(\Delta HMC\) có:

\(\begin{array}{l}\widehat {MAC} = \widehat {MHC} = {90^0}\\MC:chung\\\widehat {{M_1}} = \widehat {{M_2}}\left( {cmt} \right)\\ \Rightarrow \Delta AMC = \Delta HMC\left( {ch - gn} \right)\\ \Rightarrow AM = MH\left( {ctu} \right)\end{array}\)

-Chứng minh:NB = NH

Tam giác MNP cân tại N có NC là đường trung trực đồng thời là đường phân giác xuất phát từ N.

Xét \(\Delta HNC\) và \(\Delta BNC\) có:

CN: chung

\(\begin{array}{l}\widehat {{N_1}} = \widehat {{N_2}}\left( {cmt} \right)\\\widehat {CHN} = \widehat {CBN} = {90^0}\\ \Rightarrow \Delta CHN = \Delta CBN\left( {ch - gn} \right)\end{array}\)
\( \Rightarrow NH = NB\)(cạnh tương ứng)

\( \Rightarrow AM + BN = MH + HN = MN\)

b)

Tam giác MAH cân tại M với MC là đường phân giác xuất phát từ đỉnh cân M

\( \Rightarrow \)MC là đồng thời là đường trung trực của AH

Tam giác NBH cân tại N với NC là đường phân giác xuất phát từ đỉnh cân N

\( \Rightarrow \)NC đồng thời là đường trung trực của BH.

c)

Xét tam giác HAB có CA = CB

\( \Rightarrow \)HC là đường trung tuyến

\(\Delta AMC = \Delta HMC\)(cmt) \( \Rightarrow AC = HC\)(cạnh tương ứng)

 

\( \Rightarrow HC = CA = CB\)

Đường trung tuyến ứng với cạnh AB và bằng nửa cạnh AB.

Vậy tam giác HAB vuông tại H. 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved