CHƯƠNG III. DÒNG ĐIỆN XOAY CHIỀU

Bài III.10, III.11 trang 50 SBT Vật Lí 12

Lựa chọn câu hỏi để xem giải nhanh hơn
III.10
III.11
Lựa chọn câu hỏi để xem giải nhanh hơn
III.10
III.11

III.10

Nối hai cực của một máy phát điện xoay chiều một pha vào hai đầu đoạn mạch \(AB\) gồm điện trở thuần \(R\) mắc nối tiếp với cuộn cảm thuần. Bỏ qua điện trở các cuộn dây của máy phát. Khi rôto của máy quay đều với tốc độ \(n\) vòng/phút thì cường độ dòng điện hiệu dụng trong đoạn mạch là \(1A.\) Khi rôto của máy quay đều với tốc độ \(3n\) vòng/phút thì cường độ dòng điện hiệu dụng trong đoạn mạch là \(\sqrt 3 A.\) Nếu rôto của máy quay đều với tốc độ \(2n\) vòng/phút thì cảm kháng của đoạn mạch \(AB\) là

A. \(\dfrac{R}{{\sqrt 3 }}.\)                                  B. \(R\sqrt 3 .\)

C. \(\dfrac{{2{\rm{R}}}}{{\sqrt 3 }}.\)                                  D. \(2{\rm{R}}\sqrt 3 .\)

Phương pháp giải:

Sử dụng công thức liên hệ giữa tốc độ góc và tốc độ quay của roto: \(\omega  = 2\pi f = 2\pi pn\)

Sử dụng công thức tính điện áp máy phát điện \(U = E = NBS\omega  = NBS.2\pi pn\)

Lời giải chi tiết:

Ta có:

+ \(\omega  = 2\pi f = 2\pi pn \Rightarrow \omega  \sim n\)

+ \(U = E = NBS\omega  = NBS.2\pi pn \\\Rightarrow U \sim n\)

Khi rôto của máy quay đều với tốc độ \(n\) vòng/phút, gọi điện áp máy phát điện xoay chiều khi đó là \(U\), điện trở, cảm kháng lần lượt là \(R;{Z_L}\)

\( \Rightarrow I = \dfrac{U}{{\sqrt {{R^2} + {Z_L}^2} }} = 1(1)\)

Khi rôto của máy quay đều với tốc độ \(3n\) vòng/phút

+ \(\begin{array}{l}{Z_{{L_2}}} = L{\omega _2} \Rightarrow {Z_{{L_2}}} \sim {\omega _2} \\\Rightarrow {Z_{{L_2}}} \sim n\\ \Rightarrow {Z_{{L_2}}} = 3{Z_L}\end{array}\)

+ \({U_2} = 3U\)

\( \Rightarrow {I_2} = \) \( \Rightarrow I = \dfrac{{3U}}{{\sqrt {{R^2} + 3{Z_L}^2} }} = \sqrt 3 (2)\)

Từ (1)(2) ta có \(\dfrac{{3\sqrt {{R^2} + {Z_L}^2} }}{{\sqrt {{R^2} + 3{Z_L}^2} }} = \sqrt 3  \Rightarrow {Z_L} = \dfrac{R}{{\sqrt 3 }}\)

Khi rôto của máy quay đều với tốc độ \(3n\) vòng/phút \( \Rightarrow {Z_{{L_3}}} = 2{Z_L} = \dfrac{2}{{\sqrt 3 }}R\)

Chọn C

III.11

Đặt điện áp \(u = {U_0}\sqrt 2 cos\omega t\) (\({U_0}\) và \(\omega \) không đổi) vào hai đầu đoạn mạch \(AB\)theo thứ tự gồm một tụ điện, một cuộn cảm thuần và một điện trở thuần mắc nối tiếp. Gọi \(M\) là điểm nối giữa tụ điện và cuộn cảm. Biết điện áp hiệu dụng giữa hai đầu \(AM\) bằng điện áp hiệu dụng giữa hai đầu \(MB\) và cường độ dòng điện trong đoạn mạch lệch pha \(\dfrac{\pi }{{12}}\) so với điện áp giữa hai đầu đoạn mạch \(AB.\) Hệ số công suất của đoạn mạch \(MB\) là

A. \(0,50.\)                                 B. \(\dfrac{{\sqrt 3 }}{2}.\)

C. \(\dfrac{{\sqrt 2 }}{2}.\)                                  D. \(0,26.\)

Phương pháp giải:

Sử dụng công thức tính hệ số công suất \(\cos \varphi  = \dfrac{{{U_R}}}{U}\).

Lời giải chi tiết:

Theo đề bài \({U_{AM}} = {U_{MB}} \Leftrightarrow {U_C} = {U_{RL}}(1)\)

\(\)\( \Rightarrow \)  Hệ số công suất đoạn \(MB\) \(\cos \varphi  = \dfrac{{{U_R}}}{{{U_{RL}}}} = \dfrac{{{U_R}}}{{{U_C}}}\)

Từ (1) ta có \(U_C^2 = U_R^2 + U_L^2\)

Chia hai vế cho \({U_C}\) được

\(\begin{array}{l}1 = {\left( {\dfrac{{{U_R}}}{{{U_C}}}} \right)^2} + {\left( {\dfrac{{{U_L}}}{{{U_C}}}} \right)^2}\\ \Leftrightarrow 1 = {\cos ^2}\varphi  + {\left( {\dfrac{{{U_L}}}{{{U_C}}}} \right)^2}(2)\end{array}\)

Cường độ dòng điện trong đoạn mạch lệch pha \(\dfrac{\pi }{{12}}\) so với điện áp giữa hai đầu đoạn mạch \(AB.\)

\( \Rightarrow {\varphi _{AB}} =  - \dfrac{\pi }{{12}}rad\) (\({U_C} = {U_{RL}} > {U_L}\) )

Ta có

\(\begin{array}{l}\tan \varphi  = \dfrac{{{U_L} - {U_C}}}{{{U_R}}}\\ \Leftrightarrow \tan ( - \dfrac{\pi }{{12}}) = \dfrac{{{U_L} - {U_C}}}{{{U_R}}}\\ \Leftrightarrow (\sqrt 3  - 2){U_R} = {U_L} - {U_C}\end{array}\)

Chia hai vế cho \({U_C}\) được

\(\begin{array}{l}(\sqrt 3  - 2)\dfrac{{{U_R}}}{{{U_C}}} = \dfrac{{{U_L}}}{{{U_C}}} - 1\\ \Leftrightarrow (\sqrt 3  - 2)\cos \varphi  = \dfrac{{{U_L}}}{{{U_C}}} - 1\\ \Rightarrow \dfrac{{{U_L}}}{{{U_C}}} = (\sqrt 3  - 2)\cos \varphi  + 1(4)\end{array}\)

Thay (4) vào (2) được \(1 = {\cos ^2}\varphi  + {\left[ {(\sqrt 3  - 2)\cos \varphi  + 1} \right]^2} \\\Rightarrow \cos \varphi  = 0,5\)

Chọn A

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved