Bài 10 trang 81 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Giải các bài toán sau đây bằng phương pháp tọa độ.

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh bằng \(1\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

a) Chứng minh rằng hai mặt phẳng \((AB'D')\) và \((BC'D)\) song song với nhau.

Phương pháp giải:

Chọn hệ trục tọa độ hợp lý sau đó suy ra tọa độ các điểm của hình lập phương.

+) Lập phương trình mặt phẳng \((AB'D')\) đi qua ba điểm \(A,\, \, B', \, D'\) có VTPT \(\overrightarrow{n_1} \) và mặt phẳng \((BC'D)\) đi qua ba điểm \(B,\, \, C', \, D\) có VTPT \(\overrightarrow{n_2} .\)

+) Chứng minh hai mặt phẳng này song song ta cần chứng minh \(\overrightarrow{n_1} \) cùng phương \(\overrightarrow{n_2}. \)

Lời giải chi tiết:

Chọn hệ trục tọa độ như hình vẽ có: \(O \equiv A,\;\;B \in Ox;\;D \in Oy,A'\in Oz.\)

Khi đó: \(A\left( {0;\;0;\;0} \right);\;\;B\left( {1;\;0;\;0} \right);\;C\left( {1;\;1;\;0} \right);\;D\left( {0;\;1;\;0} \right);\) \(A'\left( {0;\;0;\;1} \right);\;\;B'\left( {1;\;0;\;1} \right);\;C'\left( {1;\;1;1} \right);\;D'\left( {0;\;1;\;1} \right).\)

a) Ta có: \(\overrightarrow {AB'}  = \left( {1;\;0;\;1} \right);\overrightarrow {AD'}  = \left( {0;\;1;\;1} \right);\) \(\overrightarrow {BC'}  = \left( {0;\;1;\;1} \right);\) \(\overrightarrow {BD}  = \left( { - 1;\;1;\;0} \right).\)

Ta có: \( \left[{\overrightarrow {AB'} ,\overrightarrow {AD'} } \right]\) \( = \left( {\left| {\begin{array}{*{20}{c}}0&1\\1&1\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&1\\1&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right|} \right) \) \(= \left( { - 1; - 1;1} \right) =  - \left( {1;\;1;\; - 1} \right).\)

Mặt phẳng \((AB’D’)\) đi qua \(A\) và có VTPT \(\overrightarrow {{n_1}}=(1;1;-1)\) \(\Rightarrow\) Phương trình mặt phẳng \((AB’D’)\) là: \(x+y-z=0.\)

\(\overrightarrow {BC'}  = \left( {0;1;1} \right),\overrightarrow {DC'}  = \left( {1;0;1} \right)\)

\( \Rightarrow \left[ {\overrightarrow {BC'} ,\overrightarrow {DC'} } \right] = \left( {1;1; - 1} \right)\)

PT \(\left( {BC'D} \right):1\left( {x - 1} \right) + 1\left( {y - 0} \right) - 1\left( {z - 0} \right) = 0\) hay \(x+y-z-1=0.\)

Xét phương trình hai mặt phẳng ta có:

\(\dfrac{1}{1} = \dfrac{1}{1} = \dfrac{{ - 1}}{{ - 1}} \ne \dfrac{0}{{ - 1}} \) \(\Rightarrow \left( {AB'D'} \right)//\left( {BC'D} \right)\;\;\;\left( {dpcm} \right).\)

Chú ý : Bài này có thể làm không cần phương pháp tọa độ như sau:

Xét hai mặt phẳng \((AB'D')\) và \((BC'D)\), ta có \(BD // B'D'\) vì \(BB'D'D\) là hình chữ nhật, \(AD' // BC'\) vì \(ABC'D'\) là hình chữ nhật.

Do đó mặt phẳng \((AB'D')\) có hai đường thẳng cắt nhau \(B'D'\) và \(AD'\) lần lượt song song với hai đường thẳng cắt nhau \(BD\) và \(BC'\) của mặt phẳng \((BC'D)\). Vì vậy \((AB'D') // (BC'D)\)

LG b

b) Tính khoảng cách giữa hai mặt phẳng nói trên.

Phương pháp giải:

Hai mặt phẳng \((AB'D')\) và \((BC'D)\)  song song nên \(d((AB'D'),(BC'D) ) = d(A, (BC'D)).\)

+) Sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng để tính.

Lời giải chi tiết:

Vì \((AB'D') // (BC'D)\) nên:

\(d((AB'D'),(BC'D) )=d(A,(BC'D))\) \( = \dfrac{{\left| {0 + 0 - 0 - 1} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }}=\dfrac{|-1|}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved