Đề bài
Chứng minh từ tỉ thức \({a \over b} = {c \over d}\) thì ta suy ra được các tỉ thức sau:
\({{a + b} \over b} = {{c + d} \over d};\,\,\,{{a - b} \over b} = {{c - d} \over d}\) và \({a \over {a + b}} = {c \over {c + d}}\) (với \(a + b \ne 0,\,\,c + d \ne 0\) )
Lời giải chi tiết
Chứng minh \({a \over b} = {c \over d} \Rightarrow {{a + b} \over b} = {{c + d} \over d}\)
Cách 1:
Ta có: \({a \over b} = {c \over d} \Rightarrow {a \over b} + {b \over b} = {c \over d} + {d \over d} \Rightarrow {{a + b} \over b} = {{c + d} \over d}\)
Cách 2:
Ta có: \({a \over b} = {c \over d} \Rightarrow {a \over c} = {b \over d} \Rightarrow {{a + b} \over {c + d}} = {b \over d} \Rightarrow {{a + b} \over b} = {{c + d} \over d}\)
Chứng minh: \({a \over b} = {c \over d} \Rightarrow {{a - b} \over b} = {{c - d} \over d}\)
Cách 1:
Ta có:\({a \over b} = {c \over d} \Rightarrow {a \over b} - {b \over b} = {c \over d} - {d \over d} \Rightarrow {{a - b} \over b} = {{c - d} \over d}\)
Cách 2:
Ta có: \({a \over b} = {c \over d} \Rightarrow {a \over c} = {b \over d} \Rightarrow {{a - b} \over {c - d}} = {b \over d} \Rightarrow {{a - b} \over b} = {{c - d} \over d}\)
Chứng minh \({a \over b} = {c \over d} \Rightarrow {a \over {a + b}} = {c \over {c + d}}\) (với \(a + b \ne 0,c + d \ne 0)\)
Ta có: \({a \over b} = {c \over d} \Rightarrow {a \over c} = {b \over d} \Rightarrow {a \over c} = {{a + b} \over {c + d}} \Rightarrow {a \over {a + b}} = {c \over {c + d}}\)
Chủ đề 4. Âm thanh
Chủ đề 6. Từ
Bài 11
Chương 6. Tỉ lệ thức và đại lượng tỉ lệ
Bài 10: Giữ gìn và phát huy truyền thống tốt đẹp của gia đình, dòng họ
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Vở thực hành Toán Lớp 7