1. Khái niệm hai tam giác đồng dạng
2. Trường hợp đồng dạng thứ nhất (c.c.c)
3. Trường hợp đồng dạng thứ hai (c.g.c)
4. Trường hợp đồng dạng thứ ba (g.g)
5. Các trường hợp đồng dạng của tam giác vuông
6. Ứng dụng thực tế của tam giác đồng dạng
Bài tập - Chủ đề II. Tam giác đồng dạng và ứng dụng
Luyện tập - Chủ đề II. Tam giác đồng dạng và ứng dụng
Đề bài
a) Cho hai tam giác AMN và ADF có các kích thước như hình a. Tính DF.
b) Hình b, cho biết \(\widehat B = \widehat C,\,\,BE = 25\,cm,\,\,AB = 20cm,\)\(\,\,DC = 15cm.\) Tính CE.
Lời giải chi tiết
a) Xét ∆AMN và ∆ADF có: \(\widehat A\) (chung) và \(\widehat {NMA} = \widehat {FDA}( = 90^\circ )\)
\( \Rightarrow \Delta AMN \sim \Delta ADF(g.g)\)
\(\Rightarrow {{MN} \over {DF}} = {{AM} \over {AD}}\)
Mà \(MN = 0,9;AM = 6;\) \(AD = AM + MD = 18\) nên \({{0,9} \over {DF}} = {6 \over {18}} \Rightarrow DF = {{0,9.18} \over 6} = 2,7(m)\)
b) ∆ABE vuông tại A, ta có: \(A{E^2} + A{B^2} = B{E^2}\) (định lí Py-ta-go)
\( \Rightarrow A{E^2} + {20^2} = {25^2} \)
\(\Rightarrow A{E^2} = 225 \Rightarrow AE = 15(cm)\)
Xét ∆BAE và ∆CAD có: \(\widehat B = \widehat C(gt)\) và \(\widehat {BAE} = \widehat {CAD}( = 90^\circ )\)
\( \Rightarrow \Delta BAE \sim \Delta CAD(g.g)\)
\(\Rightarrow {{BA} \over {CA}} = {{BE} \over {CD}}\)
Nên \({{20} \over {CA}} = {{25} \over {15}} \Rightarrow CA = {{20.15} \over {25}} = 12(cm)\) và \(CE = AE - CA = 15 - 12 = 3(cm)\)
Unit 1: Leisure time
Bài 11. Dân cư và đặc điểm kinh tế khu vực Nam Á
Unit 2: Life in the countryside
Tải 20 đề kiểm tra học kì 2 Tiếng Anh 8 mới
Tải 10 đề kiểm tra 15 phút - Chương 3
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8