1. Khái niệm hai tam giác đồng dạng
2. Trường hợp đồng dạng thứ nhất (c.c.c)
3. Trường hợp đồng dạng thứ hai (c.g.c)
4. Trường hợp đồng dạng thứ ba (g.g)
5. Các trường hợp đồng dạng của tam giác vuông
6. Ứng dụng thực tế của tam giác đồng dạng
Bài tập - Chủ đề II. Tam giác đồng dạng và ứng dụng
Luyện tập - Chủ đề II. Tam giác đồng dạng và ứng dụng
Đề bài
Tìm x trong các hình vẽ sau:
Lời giải chi tiết
•∆ABC có AD là đường phân giác (gt)\( \Rightarrow {{DB} \over {DC}} = {{AB} \over {AC}}\)
Nên \({x \over 5} = {{4,5} \over {7,2}} \Rightarrow x = {{5.4,5} \over {7,2}} = 3,125\)
•∆DEF có DH là đường phân giác (gt)
\( \Rightarrow {{HE} \over {HF}} = {{DE} \over {DF}}\)
\(\Rightarrow {{HE} \over {DE}} = {{HF} \over {DF}} = {{HE + HF} \over {DE + DF}} = {{EF} \over {DE + DF}}\)
Ta có \({{HF} \over {DF}} = {{EF} \over {DE + DF}}\) nên \({x \over {8,7}} = {{12,5} \over {6,2 + 8,7}} \Rightarrow x = {{8,7.12,5} \over {6,2 + 8,7}} \approx 7,3\)
•∆MNP có MI là đường phân giác (gt)
\( \Rightarrow {{IN} \over {IP}} = {{MN} \over {MP}}\)
\(\Rightarrow {{IN} \over {MN}} = {{IP} \over {MP}} = {{IN + IP} \over {MN + MP}} = {{NP} \over {MN + MP}}\)
Ta có: \({{IN} \over {MN}} = {{NP} \over {MN + MP}}\) nên \({3 \over 5} = {x \over {5 + 8,5}} \Rightarrow x = {{3.(5 + 8,5)} \over {}}5 = 8,1\)
•BC = BE + EC = 3 + 4 = 7
∆ABC có AE là đường phân giác (gt) nên:
\({{EB} \over {EC}} = {{AB} \over {AC}} \)
\(\Rightarrow {3 \over 4} = {x \over y} \Rightarrow {y \over 4} = {x \over 3} \Rightarrow {{{y^2}} \over {16}} = {{{x^2}} \over 9}\)
Mặt khác ∆ABC vuông tại A có \(A{B^2} + A{C^2} = B{C^2}\) (Định lí Py-ta-go)
\( \Rightarrow {x^2} + {y^2} = {7^2} = 49\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \({{{y^2}} \over {16}} = {{{x^2}} \over 9} = {{{y^2} + {x^2}} \over {16 + 9}} = {{49} \over {25}}\)
Do đó \({x^2} = {{9.49} \over {25}} = 17,64 = 4,{2^2}\) . Mà x > 0 nên x = 4,2
Tải 10 đề kiểm tra 15 phút - Chương 5 - Hóa học 8
Bài 7
CHƯƠNG VIII: DA
Bài 1. Tự hào về truyền thống dân tộc Việt Nam
Văn tự sự
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8