Đề bài
Tính diện tích hình phẳng giới hạn bởi đường cong \(y = {x^2} + 1\), tiếp tuyến với đường này tại điểm \(M(2;5)\) và trục \(Oy\).
Phương pháp giải - Xem chi tiết
+) Viết phương trình tiếp tuyến của đồ thị hàm số \(y=f(x)\) tại điểm \(M(x_0;y_0)\) theo công thức: \(y=y'(x_0) (x-x_0)+y_0.\)
+) Xét phương trình hoành độ giao điểm, tìm nghiệm.
+) Tính diện tích hình phẳng thông qua tích phân.
Lời giải chi tiết
Ta có: \(y'=2x.\)
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^2+1\) tại \(M(2;\, \, 5)\) là: \(y = y'\left( 2 \right)\left( {x - 2} \right) + 5 = 4\left( {x - 2} \right) + 5 = 4x - 3.\)
Phương trình tiếp tuyến là \(y = 4x - 3\).
Phương trình hoành độ giao điểm của đồ thị hàm số với tiếp tuyến là: \({x^2} + 1 =4x - 3 \Leftrightarrow {x^2} - 4x + 4= 0 \\ ⇔ (x-2)^2=0 ⇔ x = 2.\)
Do đó diện tích phải tìm là:
\(S=\int_{0}^{2}|x^{2}+1 -4x+3|dx \) \(=\int_{0}^{2}(x^{2}-4x+4)dx\)
\(=\left. {\left( {\dfrac{{{x^3}}}{3} - \dfrac{{4{x^2}}}{2} + 4x} \right)} \right|_0^2 \)
\(=\dfrac{8}{3} \, \, (đvdt)\).
Bài 23. Thực hành: Phân tích sự chuyển dịch cơ cấu ngành trồng trọt
Tải 10 đề kiểm tra 45 phút - Chương 3 – Hóa học 12
PHẦN 2: LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000
CHƯƠNG 10. HỆ SINH THÁI, SINH QUYỂN VÀ BẢO VỆ MÔI TRƯỜNG
CHƯƠNG VIII. SƠ LƯỢC VỀ THUYẾT TƯƠNG ĐỐI HẸP