Bài 2 trang 89 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Viết phương trình tham số của đường thẳng là hình chiếu vuông góc của đường thẳng \(d\): \(\left\{\begin{matrix} x=2+t  \\ y=-3+2t  \\ z= 1+3t \end{matrix}\right.\) lần lượt trên các mặt phẳng sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

a) \((Oxy)\) ;

Phương pháp giải:

Cách 1:

Phương pháp viết phương trình hình chiếu \((d')\) của đường thẳng \((d)\) trên mặt phẳng \((P)\):

Bước 1: Viết phương trình mặt phẳng \((Q)\) chứa \((d )\) và vuông góc với \((P\)).

- \({\overrightarrow n _{\left( Q \right)}} = \left[ {{{\overrightarrow u }_{\left( d \right)}};{{\overrightarrow n }_{\left( P \right)}}} \right]\).

- \(M \in d \Rightarrow M \in \left( Q \right)\) (với M là một điểm bất kì).

Bước 2: \(d' = \left( P \right) \cap \left( Q \right)\). Viết phương trình đường thẳng \((d')\).

Cách 2:

Lấy 2 điểm \(A,B\) bất kì thuộc d, gọi \(A',B'\) lần lượt là hình chiếu vuông góc của A, B trên (P). Khi đó \((d')\) chính là đường thẳng \(A'B'\).

Lời giải chi tiết:

Gọi \(\left( P \right)\) là mặt phẳng vuông góc \(\left( {Oxy} \right)\) và chứa \(d\).

Khi đó \(\Delta  = \left( P \right) \cap \left( {Oxy} \right)\) là hình chiếu của \(d\) lên \(\left( {Oxy} \right)\).

Phương trình mặt phẳng \((Oxy)\) có dạng: \(z = 0\); vectơ \(\overrightarrow{k}\)(0 ; 0 ;1) là vectơ pháp tuyến của  \((Oxy)\).

Ta có: \(\left\{ \begin{array}{l}\overrightarrow {{n_{\left( P \right)}}}  \bot \overrightarrow k \\\overrightarrow {{n_{\left( P \right)}}}  \bot \overrightarrow {{u_d}} \end{array} \right.\) \(\Rightarrow \overrightarrow{n_{(P)}}=\left [\overrightarrow{u},\overrightarrow{k} \right ] = (2 ; -1 ; 0)\) là vectơ pháp tuyến của \((P)\).

Phương trình mặt phẳng \((P)\) có dạng: \(2(x - 2) - (y + 3) +0.(z - 1) = 0 \) \(\Leftrightarrow 2x - y - 7 = 0\).

\(\Delta  = \left( P \right) \cap \left( {Oxy} \right)\) \(\Rightarrow \Delta :\left\{\begin{matrix} z=0 & \\ 2x-y-7=0.& \end{matrix}\right.\)

Chọn \({M_0}\left( {4;1;0} \right) \in \left( P \right) \cap \left( {Oxy} \right)\).

\(\Delta  = \left( P \right) \cap \left( {Oxy} \right)\) \( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{u_\Delta }}  \bot \overrightarrow {{n_{\left( P \right)}}} \\\overrightarrow {{u_\Delta }}  \bot \overrightarrow k \end{array} \right.\) \( \Rightarrow \overrightarrow {{u_\Delta }}  = \left[ {\overrightarrow k ,\overrightarrow {{n_{\left( P \right)}}} } \right] = \left( {1;2;0} \right)\).

Đường thẳng \(\Delta \) đi qua \({M_0}\left( {4;1;0} \right)\) và nhận \(\overrightarrow {{u_\Delta }}  = \left( {1;2;0} \right)\) làm VTCP nên \(\Delta :\left\{ \begin{array}{l}x = 4 + t\\y = 1 + 2t\\z = 0\end{array} \right.,t \in \mathbb{R}\).

Cách khác:

+) t = 0 ⇒ điểm M(2; -3; 1) ∈ d

+) t = 1 ⇒ điểm N(3; -1; 4) ∈ d.

Hình chiếu của M trên (Oxy) là M’(2 ; -3 ; 0).

Hình chiếu của N trên (Oxy) là : N’(3 ; -1 ; 0).

⇒ Hình chiếu của d trên (Oxy) là đường thẳng d’ đi qua M’ và N’.

⇒ d’ đi qua M'(2;-3;0) và nhận \(\overrightarrow {M'N'}  = \left( {1;2;0} \right)\) là 1 vtcp.

\(⇒  d':\left\{ \begin{array}{l}
x = 2 + t\\
y = - 3 + 2t\\
z = 0
\end{array} \right.\)

LG b

LG b

b) \((Oyz)\).

Lời giải chi tiết:

Mặt phẳng \((Oyz)\) có phương trình \(x = 0\).

Lấy \(M_1( 2 ;- 3 ; 1) ∈ d\) và  \(M_2( 0 ; -7 ; -5) ∈ d\).

+) Hình chiếu vuông góc của \(M_1\) trên \((Oyz)\) là \(M_1\)'\((0 ; -3 ; 1)\).

+) Hình chiếu vuông góc của \(M_2\) trên \((Oyz)\) là chính nó.

Đường thẳng \(∆\) qua \({M_1}',{M_2}\) chính là hình chiếu vuông góc của \(d\) lên \((Oyz)\).

Ta có: \(\overrightarrow{M'_{1}M_{2}}(0 ; -4 ; -6)\) // \(\overrightarrow{v} (0 ; 2 ; 3)\).

Phương trình \(M'_1M_2\) có dạng: \(\left\{\begin{matrix} x=0 & \\ y=-3+2t&,t \in R \\ z=1+3t& \end{matrix}\right.\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved