CHƯƠNG III. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC

Bài tập 37 trang 125 Tài liệu dạy – học Toán 7 tập 2

Đề bài

Cho tam giác ABC vuông cân tại A có AM là trung tuyến. Lấy điểm D bất kì thuộc cạnh BC. Gọi H và K theo thứ tự là hình chiếu vuông góc cuả B và C xuống đường thẳng AD.

a) Chứng minh tam giác AKC bằng tam giác BHA.

b) Gọi I là giao điểm của Am với CK. Chứng minh đường thẳng DI vuông góc với AC.

c) Chứng minh KM là tia phân giác góc HKI.

Lời giải chi tiết

 

a) Ta có: \(\widehat {BAH} + \widehat {DAC} = 90^\circ (\widehat {BAC} = 90^\circ )\)

\(\widehat {ACK} + \widehat {DAC} = 90^\circ\) (∆AKC vuông tại K)

Do đó \(\widehat {BAH} = \widehat {ACK}\)

Xét ∆AKC (\(\widehat {AKC} = 90^\circ\)) và ∆BHA (BHA^=90o) có:

AC = AB (∆ABC vuông cân ở A)

Và \(\widehat {ACK} = \widehat {BAH}\)

Do đó: ∆AKC = ∆BHA (cạnh huyền – góc nhọn).

b) ∆ABC cân tại A có AM là đường trung tuyến (gt).

=> AM là đường cao của tam giác ABC. Vậy \(AM \bot BC\) tại M.

∆AIC có: AK là đường cao (\(AK \bot CI\) tại K)

CM là đường cao (\(CM \bot AI\) tại M)

AK cắt CM tại D (gt)

Do đó D là trực tâm của ∆AIC => ID là đường cao của ∆AIC. Vậy \(DI \bot AC.\)

c) ∆AMC vuông tại M (\(AM \bot BC\) tại M) có \(\widehat {ACM} = 45^\circ\) (∆ABC vuông cân tại A)

=> ∆AMC vuông cân tại M => AM = CM

Xét ∆AMH và ∆CMK có AM = CM

\(\widehat {MAH} = \widehat {MCK}\) (cùng phụ với góc AIK)

AH = CK (∆AKC = ∆BHA)

Do đó ∆AMH = ∆CMK (c.g.c) => MH = MK, \(\widehat {AMH} = \widehat {CMK}\)

Ta có \(\widehat {HMK} = \widehat {HMC} + \widehat {CMK} = \widehat {HMC} + \widehat {AMH} = \widehat {AMC} = 90^\circ\)

∆MHK vuông tại M có MH = MK.

=> ∆MHK vuông cân tại M \( \Rightarrow \widehat {MHK} = 45^\circ\). Mà\(\widehat {MKH} + \widehat {MKI} = \widehat {AKI} = 90^\circ\)

Nên \(\widehat {MKI} = 90^\circ  - \widehat {MKH} = 90^\circ  - 45^\circ  = 45^\circ\)

Ta có \(\widehat {MKI} = \widehat {MKH}( = 45^\circ )\).Vậy KM là tia phân giác góc HKI.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved