CHƯƠNG III. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC

Bài tập 4 trang 120 Tài liệu dạy – học Toán 7 tập 2

Đề bài

Cho tam giác ABC có AB = AC, BM và CN là hai trung tuyến.

a) Chứng minh BM = CN.

b) Gọi I là giao điểm của BM và CN, đường thẳng AI cắt BC tại H. Chứng minh H là trung điểm của BC.

Lời giải chi tiết

 

a) Ta có: \(AM = MC = {{AC} \over 2}\) (M là trung điểm của AC)

\(AN = NB = {{AB} \over 2}\) (N là trung điểm của AB)

AC = AB (gt)

Do đó: AM = MC = AN = NB.

Xét ∆ABM và ∆ACN ta có: AB = AC (gt)

\(\widehat {BAM}\) (chung)

AM = AN

Do đó ∆ABM = ∆CAN (c.g.c) => BM = CN.

b) ∆ABC có: BM và CN là hai đường trung tuyến (gt)

I là giao điểm của BM và CN (gt)

=> I là trọng tâm của ∆ABC

Mà AH đi qua I (\(H \in BC\)). Vậy AH là đường trung tuyến của tam giác ABC.

Do đó H là trung điểm của BC.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved