CHƯƠNG IV. HÌNH LĂNG TRỤ ĐỨNG – HÌNH CHÓP ĐỀU

Bài tập 4 trang 122 Tài liệu dạy – học Toán 8 tập 2

Đề bài

Tam giác đều lớn có cạnh là 8 cm. Khi gấp tam giác theo đường có gạch chấm, em có thể tạo thành hình chóp được không ? Tính diện tích toàn phần hình chóp đó ?

 

Lời giải chi tiết

Khi gấp tam giác theo đường có gạch chấm ta nhận được hình chóp tam giác đều.

 

M, N lần lượt là trung điểm của AB và AC (gt)

=>MN là đường trung bình của tam giác ABC \( \Rightarrow MN = {{BC} \over 2} = {8 \over 2} = 4(cm)\)

Đáy của hình chóp là tam giác đều cạnh 4cm

Chiều cao của tam giác đáy là: \(HN = \sqrt {M{N^2} - M{H^2}}  = \sqrt {{4^2} - {2^2}} \)\(\, = \sqrt {12} (cm)\)

Diện tích đáy của hình chóp đều là: \({S_d} = {1 \over 2}HN.MP \)\(\,= {1 \over 2}\sqrt {12} .4 = 2\sqrt {12} (c{m^2})\)

Trung đoạn của tam giác bên là: \(AH = \sqrt {A{P^2} - H{P^2}}  \)\(\,= \sqrt {{4^2} - {2^2}}  = \sqrt {12} (cm)\)

Diện tích xung quanh của hình chóp đều:

\({S_{xq}} = p.h\)\(\, = {1 \over 2}(MN + NP + MP).AH \)\(\,= {1 \over 2}.12.\sqrt {12}  = 6\sqrt {12} (c{m^2})\)

Diện tích toàn phần hình chóp đều: \({S_{tp}} = {S_{xq}} + {S_d} = 6\sqrt {12}  + 2\sqrt {12} \)\(\, = 8\sqrt {12} (c{m^2})\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved