Các câu hỏi trắc nghiệm ôn tập chương III trang 122 SGK Hình học 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2
LG 3
LG 4
LG 5
LG 6
LG 7
LG 8
LG 9
LG 10
LG 11
LG 12
Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2
LG 3
LG 4
LG 5
LG 6
LG 7
LG 8
LG 9
LG 10
LG 11
LG 12

LG 1

Cho tứ diện ABCD có trọng tâm G. Mệnh đề nào sau đây là sai ?

A. \(\overrightarrow {OG}  = {1 \over 4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right)\)

B. \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)

C. \(\overrightarrow {AG}  = {2 \over 3}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\)

D. \(\overrightarrow {AG}  = {1 \over 4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\)

Giải chi tiết:

(A), (B) đúng.

Gọi G1 là trọng tâm ΔBCD ta có \(\overrightarrow {AG}  = {3 \over 4}\overrightarrow {A{G_1}}  = {1 \over 4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\) nên (D) đúng.

Vậy chọn (C)

LG 2

Mệnh đề nào sau đây là đúng ?

A. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau ;

B. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau ;

C. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia ;

D. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại.

Giải chi tiết:

Chọn (C)

LG 3

Cho hai đường thẳng phân biệt a, b và mặt phẳng (P), trong đó a ⊥ (P). Mệnh đề nào sau đây là sai ?

A. Nếu b // (P) thì b ⊥ a

B. Nếu b ⊥ (P) thì b // a

C. Nếu b // a thì b ⊥ (P)

D. Nếu b ⊥ a thì b // (P)

Giải chi tiết:

 

Nếu b ⊥ a thì có thể b ⊂ (P)

Chọn (D)

LG 4

Tìm mệnh đề đúng trong các mệnh đề sau :

A. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song ;

B. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song ;

C. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song ;

D. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.

Giải chi tiết:

\(\left\{ {\matrix{   {(P) \ne (Q)}  \cr   {(P) \bot a}  \cr   {(Q) \bot a}  \cr } } \right. \Rightarrow (P)//(Q)\)

Chọn (C)

LG 5

Mệnh đề nào sau đây là đúng ?

A. Hai đường thẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này sẽ vuông góc với mặt phẳng kia ;

B. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì vuông góc với nhau ;

C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau ;

D. Ba mệnh đề trên đều sai.

Giải chi tiết:

Chọn D.

(A). Sai theo hình vẽ bên

\(\left\{ {\matrix{   {(P) \bot (Q)}  \cr   {a \subset (Q)}  \cr } } \right.\) nhưng a // (P)

(B), (C) sai theo hình vẽ sau.

LG 6

Trong các mệnh đề sau, mệnh đề nào đúng ?

A. Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước ;

B. Có duy nhất một mặt phẳng đi qua một đường thẳng cho trước và vuông góc với một mặt phẳng cho trước ;

C. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước ;

D. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

Giải chi tiết:

Chọn (D)

 

LG 7

Tìm mệnh đề đúng trong các mệnh đề sau :

A. Nếu hình hộp có hai mặt là hình chữ nhật thì nó là hình hộp chữ nhật ;

B. Nếu hình hộp có ba mặt là hình chữ nhật thì nó là hình hộp chữ nhật ;

C. Nếu hình hộp có bốn mặt là hình chữ nhật thì nó là hình hộp chữ nhật ;

D. Nếu hình hộp có năm mặt là hình chữ nhật thì nó là hình hộp chữ nhật.

Giải chi tiết:

Chọn (D)

LG 8

Trong các mệnh đề sau, mệnh đề nào đúng ?

A. Nếu hình hộp có hai mặt là hình vuông thì nó là hình lập phương ;

B. Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương ;

C. Nếu hình hộp có sáu mặt bằng nhau thì nó là hình lập phương ;

D. Nếu hình hộp có bốn đường chéo bằng nhau thì nó là hình lập phương .

Giải chi tiết:

Chọn (B)

LG 9

Cho hình chóp S.ABC có đáy là tam giác đều. Tìm mệnh đề đúng trong các mệnh đề sau :

A. S.ABC là hình chóp đều nếu các mặt bên của nó là tam giác cân ;

B. S.ABC là hình chóp đều nếu các mặt bên của nó là tam giác cân với đỉnh S ;

C. S.ABC là hình chóp đều nếu góc giữa các mặt phẳng chứa các mặt bên và mặt phẳng chứa đáy bằng nhau ;

D. S.ABC là hình chóp đều nếu các mặt bên có diện tích bằng nhau.

Giải chi tiết:

Chọn (B)

LG 10

Tìm mệnh đề đúng trong các mệnh đề sau :

A. Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia ;

B. Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia ;

C. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó ;

D. Các mệnh đề trên đều sai.

Giải chi tiết:

Chọn (B)

 

LG 11

Hình tứ diện ABCD có AB, AC, AD đôi một vuông góc là AB = AC = AD = 3.

Diện tích tam giác BCD bằng

A. \({{9\sqrt 3 } \over 2}\)

B. \({{9\sqrt 2 } \over 3}\)

C. 27

D. \({{27} \over 2}\)

Giải chi tiết:

Chọn (A).

 

Ta có: BC = CD = BD = \(3\sqrt 2 \)

Tam giác BCD đều cạnh \(a = 3\sqrt 2 \) nên

\({S_{BCD}} = {{{a^2}\sqrt 3 } \over 4} = {{18\sqrt 3 } \over 4} = {{9\sqrt 3 } \over 2}\)

LG 12

Hình hộp ABCD.A’B’C’D’ có AB = AA’ = AD = a và \(\widehat {A'AB} = \widehat {A'AD} = \widehat {BAD} = 60^\circ .\) Khi đó, khoảng cách giữa các đường thẳng chứa các cạnh đối diện của tứ diện AA’BD bằng :

A. \({{a\sqrt 2 } \over 2}\)

B. \({{a\sqrt 3 } \over 2}\)

C. \(a\sqrt 2 \)

D. \({{3a} \over 2}\)

Giải chi tiết:

Chọn (A)

 

Tứ diện A’ABD là tứ diện đều cạnh a.

M, N lần lượt là trung điểm AA’, BD.

MN là đoạn vuông góc chung của AA’ và BD. Ta có:

\(M{N^2} = A'{N^2} - A'{M^2}\)

            \(= {\left( {{{a\sqrt 3 } \over 2}} \right)^2} - {\left( {{a \over 2}} \right)^2}\)

            \(= {{3{a^2}} \over 4} - {{{a^2}} \over 4} = {{{a^2}} \over 2} \)

\(\Rightarrow {\rm M}{\rm N} = {{a\sqrt 2 } \over 2}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved