Bài 1. Tập hợp. Phần tử của tập hợp
Bài 6. Chia hết và chia có dư. Tính chất chia hết của một tổng
Bài 13. Bội chung. Bội chung nhỏ nhất
Bài 2. Tập hợp các số tự nhiên. Ghi số tự nhiên
Bài 8. Dấu hiệu chia hết cho 3, cho 9
Bài 3. Các phép tính trong tập hợp số tự nhiên
Bài 5. Thứ tự thực hiện các phép tính
Bài 14. Hoạt động thực hành và trải nghiệm
Bài 7. Dấu hiệu chia hết cho 2, cho 5
Bài 12. Ước chung. Ước chung lớn nhất
Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
Bài 9. Ước và bội
Bài tập cuối chương 1
Bài 4. Lũy thừa với số mũ tự nhiên
Bài 11. Hoạt động thực hành và trải nghiệm
I. Thực hiện phép cộng
Phương pháp:
- Cộng các số theo “hàng ngang” hoặc theo “hàng dọc”
- Sử dụng máy tính bỏ túi (đối với những bài được phép dùng )
Phương pháp:
- Quan sát, phát hiện các đặc điểm của các số hạng.
- Từ đó, xét xem nên áp dụng tính chất nào (giao hoán, kết hợp) để tính một cách nhanh chóng.
Đặc biệt: Viết một số dưới dạng một tổng để tính một cách hợp lí
Phương pháp:
Bước 1: Căn cứ theo yêu cầu của đề bài, ta có thể viết một số tự nhiên đã cho dưới dạng một tổng của hai hay nhiều số hạng.
Bước 2: Sử dụng tính chất giao hoán, kết hợp để tính một cách hợp lí.
Phương pháp:
+ Để tìm số chưa biết trong một phép tính, ta cần nắm vững quan hệ giữa các số trong phép tính. Chẳng hạn: một số hạng bằng tổng của hai số trừ số hạng kia…
Ví dụ:
Tìm số tự nhiên $x$ biết: $x+1=5$
Giải:
$x+1=5$
$x$ $=5-1$
$x$ $=4$
Phương pháp:
Nhận xét, phát hiện và sử dụng các đặc điểm của các số hạng trong tổng. Từ đó dựa vào các tính chất của phép cộng để rút ra kết luận.
Ví dụ:
So sánh hai tổng $1367+5472$ và $5377+1462$ mà không tính giá trị cụ thể của chúng.
Giải:
Đặt \(A=1367+5472\) và \(B=5377+1462\)
\(A=1367+5472\)
\(A=1000+300+67+5000+400+62+10\)
\(A=5000+1000+400+300+67+62+10\)
\(B=5377+1462\)
\(B=5000+300+67+10+1000+400+62\)
\(B=5000+1000+400+300+67+62+10\)
Như vậy, A = B
Phương pháp:
- Quan sát, phát hiện các đặc điểm của các thừa số.
- Từ đó, xét xem nên áp dụng tính chất nào (giao hoán, kết hợp, phân phối) để tính một cách nhanh chóng.
Đặc biệt: Viết một số dưới dạng một tích để tính nhanh
Phương pháp:
Bước 1: Căn cứ theo yêu cầu của đề bài, ta có thể viết một số tự nhiên đã cho dưới dạng một tích của hai hay nhiều thừa số.
Bước 2: Sử dụng tính chất giao hoán, kết hợp và phân phối để tính một cách hợp lí.
Phương pháp:
+ Để tìm số chưa biết trong một phép tính, ta cần nắm vững quan hệ giữa các số trong phép tính. Chẳng hạn: thừa số bằng tích chia cho thừa số đã biết,…
+ Đặc biệt cần chú ý: với mọi $a$\( \in \)$N$ ta đều có $a.0 = 0;a.1 = a.$
+ Nếu tích hai thừa số bằng 0 thì có ít nhất một thừa số bằng 0.
Ví dụ:
Tìm $x$, biết $x.5=65$.
Giải:
$x.5=65$
$x=65:5$
$x=13$
Phương pháp:
Nhận xét, phát hiện và sử dụng các đặc điểm của các thừa số trong tổng hoặc tích. Từ đó dựa vào các tính chất phép nhân để rút ra kết luận.
Ví dụ:
So sánh hai tích sau mà không tính giá trị của chúng
\(A = 2018.2018;B = 2017.2019\)
Giải:
Ta có:
\(\begin{array}{l}A = 2018.2018\\ = 2018.\left( {2017 + 1} \right)\\ = 2018.2017 + 2018.1\\ = 2018.2017 + 2018\\=2017.2018+2018\\B = 2017.2019\\ = 2017.\left( {2018 + 1} \right)\\ = 2017.2018 + 2017.1\\ = 2017.2018 + 2017\\ A= 2017.2018 + 2018=2017.2018+2017+1\\ = B + 1\\ \Rightarrow A = B+ 1\end{array}\)
Vì \(B+1 > B\) nên \(A > B\).
Phương pháp:
Dựa vào điều kiện xác định các chữ số trong số tự nhiên cần tìm để tìm từng chữ số có mặt trong số tự nhiên đó.
Ví dụ:
Tìm một số tự nhiên có hai chữ số, biết rằng khi thêm 21 vào bên trái số đó thì được một số mới gấp 31 lần số cần tìm.
Giải:
Gọi số cần tìm là \(\overline {ab} \), khi viết thêm số 21 vào bên trái số đó ta được số \(\overline {21ab} \).
Vì \(\overline {21ab} \) gấp 31 lần \(\overline {ab} \) nên ta có:
\(\begin{array}{l}\overline {ab} \times 31 = \overline {21ab} \\\overline {ab} \times 31 = 2100 + \overline {ab} \\\overline {ab} \times 31 - \overline {ab} \times 1 = 2100\\\overline {ab} \times \left( {31 - 1} \right) = 2100\\\overline {ab} \times 30 = 2100\\\overline {ab} = 2100:30\\\overline {ab} = 70\end{array}\)
Phương pháp:
Áp dụng một số tính chất sau đây:
- Tổng của hai số không đổi nếu ta thêm vào ở số hạng này và bớt đi ở số hạng kia cùng một số đơn vị.
Ví dụ 1:
- Hiệu của hai số không đổi nếu ta thêm vào một số bị trừ và số trừ cùng một số đơn vị.
Ví dụ 2:
$315 - 97 = \left( {315 + 3} \right)-\left( {97 + 3} \right) $$
= 318 - 100 = 218$Phương pháp:
+ Muốn tìm một số hạng trong phép cộng hai số, ta lấy tổng trừ số hạng kia.
+ Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ.
+ Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu.
Phương pháp:
+ Muốn tìm số bị chia ta, ta lấy thương nhân với số chia.
+ Muốn tìm số chia, ta lấy số bị chia chia cho thương.
Ví dụ:
Tìm số tự nhiên \(x\) biết:
a) \(1236:x = 12\)
b) \(x:5 = 123\)
Giải:
a) \(1236:x = 12\)
\(\begin{array}{l}x = 1236:12\\x = 103\end{array}\)
b) \(x:5 = 123\)
\(\begin{array}{l}x = 123.5\\x = 615\end{array}\)
SOẠN VĂN 6 TẬP 1 - CTST CHI TIẾT
SOẠN VĂN 6 TẬP 1 - CÁNH DIỀU SIÊU NGẮN
Bài 3: Vẻ đẹp quê hương
Chủ đề 9. Trục đối xứng. Tâm đối xứng
Review 1 (Units 1 - 3)
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
Tài liệu Dạy - học Toán Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6