1. Một số dạng toán thường gặp đối với lũy thừa với số mũ hữu tỉ:
Phương pháp:
- Bước 1: Đưa các lũy thừa về cùng cơ số hoặc số mũ (nếu có thể)
- Bước 2: Biến đổi các lũy thừa, căn bậc \(n\) sử dụng các tính chất của lũy thừa với số mũ nguyên, hữu tỉ.
- Bước 3: Thực hiện tính toán với chú ý về thứ tự thực hiện các phép tính:
+ Nếu không có ngoặc: Lũy thừa (căn bậc \(n\)) \( \to \) nhân, chia \( \to \) cộng, trừ.
+ Nếu có ngoặc: Thực hiện trong ngoặc \( \to \) lũy thừa (căn bậc \(n\)) \( \to \) nhân, chia \( \to \) cộng, trừ.
Ví dụ 1: Rút gọn biểu thức: $P = {x^{\frac{1}{3}}}.\sqrt[6]{x}$
Ta có: $P = {x^{\frac{1}{3}}}.\sqrt[6]{x} = {x^{\frac{1}{3}}}.{x^{\frac{1}{6}}} = {x^{\frac{1}{3} + \frac{1}{6}}} = {x^{\frac{1}{2}}}.$
Phương pháp:
- Bước 1: Đưa các lũy thừa về cùng cơ số hoặc số mũ(nếu có thể)
- Bước 2: Tính toán, rút gọn các biểu thức đã cho bằng cách sử dụng các tính chất của lũy thừa với số mũ hữu tỉ, căn bậc \(n\).
- Bước 3: So sánh giá trị các biểu thức đã rút gọn dựa vào tính chất về so sánh hai lũy thừa:
1/ Với \(a > 1\) thì \({a^m} > {a^n} \Leftrightarrow m > n\)
2/ Với \(0 < a < 1\) thì \({a^m} > {a^n} \Leftrightarrow m < n\)
3/ Với \(0 < a < b\) thì:
a) \({a^m} < {b^m} \Leftrightarrow m > 0\)
b) \({a^m} > {b^m} \Leftrightarrow m < 0\)
4/ Với \(a > 0,b > 0\) thì \({a^n} = {b^n} \Leftrightarrow a = b\).
Ở đó \(m,n\) là các số hữu tỉ.
5/ Với \(a < b,n\) là số tự nhiên lẻ thì \({a^n} < {b^n}\)
Ví dụ 2: Cho \(a > 1\), so sánh \(\sqrt[{15}]{{{a^7}}}\) với \(\sqrt[5]{{{a^2}}}\)
Ta có: \(\sqrt[{15}]{{{a^7}}} = {a^{\frac{7}{{15}}}};\sqrt[5]{{{a^2}}} = {a^{\frac{2}{5}}}\)
Vì \(\dfrac{7}{{15}} > \dfrac{2}{5}\) và \(a > 1\) nên \({a^{\frac{7}{{15}}}} > {a^{\frac{2}{5}}}\) hay \(\sqrt[{15}]{{{a^7}}} > \sqrt[5]{{{a^2}}}\)
2. Một số dạng toán thường gặp đối với lũy thừa với số mũ vô tỉ:
Dạng 1: Tính giá trị, rút gọn các biểu thức.
Phương pháp:
- Bước 1: Biến đổi các lũy thừa sử dụng các tính chất của lũy thừa với số mũ thực.
- Bước 2: Thực hiện tính toán với chú ý về thứ tự thực hiện các phép tính:
+ Nếu không có ngoặc: Lũy thừa (căn bậc \(n\)) \( \to \) nhân, chia \( \to \) cộng, trừ.
+ Nếu có ngoặc: Thực hiện trong ngoặc \( \to \) lũy thừa (căn bậc \(n\)) \( \to \) nhân, chia \( \to \) cộng, trừ.
Dạng 2: So sánh hai hay nhiều biểu thức.
Phương pháp:
- Bước 1: Đưa các lũy thừa về cùng cơ số hoặc số mũ(nếu có thể)
- Bước 2: Tính toán, rút gọn các biểu thức đã cho bằng cách sử dụng các tính chất của lũy thừa với số mũ hữu tỉ, số mũ thực, căn bậc \(n\).
- Bước 3: So sánh giá trị các biểu thức đã rút gọn dựa vào tính chất về so sánh hai lũy thừa.
CHƯƠNG VII. HẠT NHÂN NGUYÊN TỬ
Tải 10 đề kiểm tra 45 phút - Chương 3 – Hóa học 12
Bài 16. Đặc điểm dân số và phân bố dân cư ở nước ta
Chương 8. Nhận biết một số chất vô cơ
Một số tác giả, tác phẩm, nghị luận văn học, xã hội tham khảo