GIẢI TOÁN 6 TẬP 1 KẾT NỐI TRI THỨC VỚI CUỘC SỐNG
GIẢI TOÁN 6 TẬP 1 KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Các dạng toán về thứ tự thực hiện phép tính

I. Thực hiện phép tính

Phương pháp:

1. Đối với biểu thức không có dấu ngoặc :

+ Nếu phép tính chỉ có cộng, trừ hoặc chỉ có nhân, chia, ta thực hiện phép tính theo thứ tự từ trái sang phải.

+ Nếu phép tính có cả cộng , trừ, nhân, chia, nâng lên lũy thừa, ta thực hiện phép nâng lên lũy thừa trước, rồi đến nhân chia, cuối cùng đến cộng trừ.

Lũy thừa \( \to \)  nhân và chia \( \to \)  cộng và trừ.

2. Đối với biểu thức có dấu ngoặc.

Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

Ví dụ: Thực hiện phép tính

a) $12+5+36$

$=17+36$

$=43$

b) $20 – [ 30 – (5 – 1)^2]$

$=20-[30-4^2]$

$=20-[30-16]$

$=20-14$

$=6$

II. Tìm số hạng chưa biết trong một đẳng thức

Phương pháp:

Để tìm số hạng chưa biết, ta cần xác định rõ xem số hạng đó nằm ở vị trí nào (số trừ, số bị trừ, hiệu, số chia,…). Từ đó xác định được cách biến đổi và tính toán.

Ví dụ:

Tìm số tự nhiên $x$, biết:

a) $70 – 5.(x – 3) = 45$

Ta coi $5(x-3)$ làm một ẩn số cần tìm.

=> $5(x-3)$ là số trừ trong phép trừ trên.

$70 – 5.(x – 3) = 45$

$5.(x-3)=70-45$

$5.(x-3)=25$

$x-3=25:5$

$x-3=5$

$x=5+3$

$x=8$

b) $10 + 2x = 4^5: 4^3$

$10+2x=4^{5-3}$

$10+2x=4^2$

$10+2x=16$

$2x=16-10$

$2x=6$

$x=3$

III. So sánh giá trị các biểu thức

Phương pháp:

Tính riêng giá trị từng biểu thức rồi so sánh.

Ví dụ:

So sánh A và B biết:

$A=125 - 2.[56 - 48 : (15 - 7)]$ và $B=75 - 25.10 + 25.13 + 180$

Giải:

Ta có:

+) $A=125 - 2.[56 - 48 : (15 - 7)]$

$A=125-2.[56-48:8]$

$A=125-2.[56-6]$

$A=125-2.50$

$A=125-100=25$

+) $B=75 - 25.10 + 25.13 + 180$

$B=75+25.13-25.10+180$

$B=75+25.(13-10)+180$

$B=75+25.3+180$

$B=75+75+180$

$B=150+180=330$

Vậy $A<B$

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved