PHẦN GIẢI TÍCH - TOÁN 12

Bài 1 trang 45 SGK Giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

\(\displaystyle y =  - {x^3} + 2{x^2} - x - 7\)

Phương pháp giải:

B1: Tính đạo hàm \(y'\)

B2: Tìm nghiệm của phương trình \(y'=0 \), các giá trị của x mà tại đó hàm số k xác định

B3: Kết luận khoảng đồng biến, nghịch biến

Biết rằng

a) Nếu \(f'(x)> 0\) với mọi \(x \in(a; \, b)\) thì hàm số \(f(x)\) đồng biến trên khoảng đó.

b) Nếu \(f'(x)< 0\) với mọi \(x \in(a; \, b)\) thì hàm số \(f(x)\) nghịch biến trên khoảng đó.

Lời giải chi tiết:

* Xét hàm số: \(\displaystyle y =  - {x^3} +2{x^2} - x - 7\)

Tập xác định: \(\displaystyle D =\mathbb R\)

Ta có: \(\displaystyle y' =  - 3{x^2} + 4x - 1 \Rightarrow y' = 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow - 3{x^2} + 4x - 1 = 0\\ \Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
3x - 1 = 0\\
x - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{1}{3}\\
x = 1
\end{array} \right..
\end{array}\)

Hàm số đồng biến \(\displaystyle \Leftrightarrow y' > 0\) \( \Leftrightarrow  - 3{x^2} + 4x - 1 > 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow 3{x^2} - 4x + 1 < 0 \\\Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) < 0\\
\Leftrightarrow \dfrac{1}{3} < x < 1.
\end{array}\)

Hàm số nghịch biến \(\displaystyle \Leftrightarrow y' < 0 \Leftrightarrow  - 3{x^2} + 4x - 1 < 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow 3{x^2} - 4x + 1 > 0\\ \Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < \dfrac{1}{3}
\end{array} \right..
\end{array}\)

Vậy hàm số đồng biến trong \(\displaystyle ({1 \over 3},1)\) và nghịch biến trong \(\displaystyle ( - \infty ,{1 \over 3}) \) và \(\displaystyle (1, + \infty ).\)

LG b

\(\displaystyle y = {{x - 5} \over {1 - x}}\)

Lời giải chi tiết:

Xét hàm số:  \(\displaystyle y = {{x - 5} \over {1 - x}} = \dfrac{x-5}{-x+1}\)

Tập xác định: \(\displaystyle D = \mathbb R \backslash {\rm{\{ }}1\} \)

Ta có: \(\displaystyle y' = \dfrac{1.1-5.1}{(1-x)^2}= {{ - 4} \over {{{(1 - x)}^2}}} < 0,\forall x \in D\)

Vậy hàm số nghịch biến trong từng khoảng \(\displaystyle (-∞,1)\) và \(\displaystyle (1, +∞)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved