Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Chứng minh rằng phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đó.
Lời giải chi tiết
Giả sử phép tịnh tiến \({T_{\overrightarrow u }}\) biến đường thẳng d thành đường thẳng d’.
Lấy hai điểm phân biệt M, N trên d và gọi M’, N’ lần lượt là ảnh của M, N qua phép tịnh tiến \({T_{\overrightarrow u }}\) thì M’, N’ nằm trên d’.
Ta có \(\overrightarrow {MN} = \overrightarrow {M'N'} \). Vậy hai đường thẳng d và d’ có cùng vecto chỉ phương nên d//d’ hoặc trùng với d’.
d trùng với d’ khi \(\overrightarrow u \) cùng phương với \(\overrightarrow {MN} \), tức là khi \(\overrightarrow u \) là vecto chỉ phương của d hoặc \(\overrightarrow u = \overrightarrow v \) ;
d//d' khi \(\overrightarrow u \) không phải là vecto chỉ phương của d.
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
Tác giả - Tác phẩm Ngữ văn 11 tập 1
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Toán lớp 11
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Địa lí lớp 11
Phần hai. Địa lí khu vực và quốc gia
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11