ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu 10 trang 41 SGK Đại số và giải tích 11

Đề bài

Phương trình \(2\tan x – 2 \cot x – 3 = 0\) có số nghiệm thuộc khoảng \(({{ - \pi } \over 2},\pi )\) là:

A. \(1\)            B. \(2\)            C. \(3\)            D. \(4\)

Phương pháp giải - Xem chi tiết

B1: Đưa về phương trình bậc hai của tanx bằng công thức \(\cot x = \dfrac{1}{{\tan x}}\).

B2: Giải PT lượng giác , lấy các nghiệm thuộc khoảng \(({{ - \pi } \over 2},\pi )\) và KL.

Lời giải chi tiết

Ta có:

\(\eqalign{
& 2\tan x - 2\cot x - 3 = 0 \cr 
& \Leftrightarrow 2\tan x - {2 \over {\tan x}} - 3 = 0 \cr 
& \Rightarrow 2{\tan ^2}x - 3\tan x - 2 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\tan x = 2 \hfill \cr 
\tan x = {{ - 1} \over 2} \hfill \cr} \right. \cr} \)

Vẽ đường tròn lượng giác với giá trị \(tanx = 2\), \(\tan x = {{ - 1} \over 2}\) ta thấy phương trình có ba nghiệm thuộc khoảng \(({{ - \pi } \over 2},\pi )\).

Cách khác:

\(\left[ \begin{array}{l}
\tan x = 2\\
\tan x = - \frac{1}{2}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \arctan 2 + k\pi \\
x = \arctan \left( { - \frac{1}{2}} \right) + k\pi
\end{array} \right.\)

\(\begin{array}{l}
+ ) - \frac{\pi }{2} < \arctan 2 + k\pi < \pi \\
\Leftrightarrow - \frac{\pi }{2} - \arctan 2 < k\pi < \pi - \arctan 2\\
\Leftrightarrow \frac{{ - \frac{\pi }{2} - \arctan 2}}{\pi } < k < \frac{{\pi - \arctan 2}}{\pi }\\
\Rightarrow - 0,85 < k < 0,65\\
\Rightarrow k = 0\\
\Rightarrow x = \arctan 2\\
+ ) - \frac{\pi }{2} < \arctan \left( { - \frac{1}{2}} \right) + k\pi < \pi \\
\Leftrightarrow - \frac{\pi }{2} - \arctan \left( { - \frac{1}{2}} \right) < k\pi < \pi - \arctan \left( { - \frac{1}{2}} \right)\\
\Leftrightarrow \frac{{ - \frac{\pi }{2} - \arctan \left( { - \frac{1}{2}} \right)}}{\pi } < k < \frac{{\pi - \arctan \left( { - \frac{1}{2}} \right)}}{\pi }\\
\Rightarrow - 0,35 < k < 1,15\\
\Rightarrow k \in \left\{ {0;1} \right\}\\
\Rightarrow x \in \left\{ {\arctan \left( { - \frac{1}{2}} \right);\arctan \left( { - \frac{1}{2}} \right) + \pi } \right\}
\end{array}\)

Vậy có ba nghiệm cần tìm.

Chọn đáp án C.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved