Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho bốn điểm không đồng phẳng A, B, C, D; G là trọng tâm của tam giác ACD. Các điểm M, N, P lần lượt thuộc các đoạn thẳng AB, AC, AD sao cho:
\({{MA} \over {MB}} = {{NC} \over {NA}} = {{PD} \over {PA}} = {1 \over 2}\)
Gọi I, J lần lượt là các giao điểm của đường thẳng MN với BC và MP với BD.
a) Chứng minh rằng các đường thẳng MG, PI, NJ đồng phẳng.
b) Gọi E, F lần lượt các trung điểm của CD, NI; H là giao điểm của MG với BE; K là giao điểm của GF với mp (BCD). Chứng minh rằng các điểm H, K, I, J thẳng hàng.
Lời giải chi tiết
a) Ta có:
\(\eqalign{
& JN \subset mp\left( {MNP} \right) \cr
& IP \subset mp\left( {MNP} \right) \cr} \)
Vì \({{CN} \over {NA}} = {{EG} \over {GA}} = {{DP} \over {PA}} = {1 \over 2}\)
nên trong mp(ACD) các điểm N, G, P nằm trên một đường thẳng song song với CD. Từ đó G thuộc NP, Suy ra \(MG \subset mp\left( {MNP} \right).\) Vậy ba đường thẳng MG, JN, IP đều thuộc mp(MNP).
b) Vì H là giao điểm của MG với BE nên H thuộc mp(MNP) và mp(BCD). Vì K là giao điểm của GF với mp(BCD) nên K thuộc mp(BCD) và mp(MNP).
Mặt khác mp(MNP) và mp(BCD) cắt nhau theo giao tuyến IJ.
Vậy các điểm H và K phải thuộc đường thẳng IJ, tức là bốn điểm I, J, K, H thẳng hàng.
Đề minh họa số 1
Chương 2: Nitrogen và sulfur
Bài 9: Tiết 2: Các ngành kinh tế và các vùng kinh tế Nhật Bản - Tập bản đồ Địa lí 11
Unit 6: Transitions
Chuyên đề 1. Phép biến hình phẳng
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11