Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Tìm cực trị các hàm số sau:
LG a
\(f(x) = 2{x^3} - 9{x^2} + 12x + 3\)
Lời giải chi tiết:
\(\begin{array}{l}f'\left( x \right) = 6{x^2} - 18x + 12\\f'\left( x \right) = 0 \Leftrightarrow 6{x^2} - 18x + 12 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\end{array}\)
BBT:
Hàm số đạt cực đại tại điểm x = 1; f(1) = 8 và đạt cực tiểu tại điểm x = 2; f(2) = 7
LG b
\(f(x) = - 5{x^3} + 3{x^2} - 4x + 5\)
Lời giải chi tiết:
\(f'\left( x \right) = - 15{x^2} + 6x - 4\)
Có \(\Delta ' = 9 - \left( { - 15} \right).\left( { - 4} \right) = - 51 < 0\) và \(a = - 15 < 0\) nên \(f'\left( x \right) < 0,\forall x \in \mathbb{R}\)
Do đó hàm số nghịch biến trên \(\mathbb{R}\) nên không có cực trị.
LG c
\(f(x) = 3{x^4} - 4{x^3} - 24{x^2} + 48x - 3\)
Lời giải chi tiết:
\(\begin{array}{l}f'\left( x \right) = 12{x^3} - 12{x^2} - 48x + 48\\f'\left( x \right) = 0\\ \Leftrightarrow 12{x^3} - 12{x^2} - 48x + 48 = 0\\ \Leftrightarrow {x^3} - {x^2} - 4x + 4 = 0\\ \Leftrightarrow {x^2}\left( {x - 1} \right) - 4\left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \pm 2\end{array} \right.\end{array}\)
BBT:
Hàm số đạt cực tiểu tại các điểm x = -2; f(-2) = -115 và x = 2; f(2) = 13.
Đạt cực đại tại điểm x = 1; f(1) = 20.
LG d
\(f(x) = x - 3 + {9 \over {x - 2}}\)
Lời giải chi tiết:
\(\begin{array}{l}f'\left( x \right) = 1 - \frac{9}{{{{\left( {x - 2} \right)}^2}}}\\f'\left( x \right) = 0 \Leftrightarrow 1 - \frac{9}{{{{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow \frac{{{{\left( {x - 2} \right)}^2} - 9}}{{{{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow {\left( {x - 2} \right)^2} = 9\\ \Leftrightarrow \left[ \begin{array}{l}x - 2 = 3\\x - 2 = - 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = - 1\end{array} \right.\end{array}\)
BBT:
Hàm số đạt cực đại tại điểm x = -1; f(-1) = -7, đạt cực tiểu tại điểm x = 5; f(5) = 5.
Tải 5 đề kiểm tra 45 phút - Chương 5 – Hóa học 12
Chương 4. Dao động và sóng điện từ
Bài 3: Công dân bình đẳng trước pháp luật
Đề thi học kì 2
ĐỀ THI HỌC KÌ 2 MỚI NHẤT CÓ LỜI GIẢI