Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến đồ thị của mỗi hàm số sau thành đồ thị hàm số nào ?
LG a
LG a
\(y = \sin x\)
Phương pháp giải:
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\)
\(\left\{ \matrix{
x' = x + {\pi \over 4} \hfill \cr
y' = y + 1 \hfill \cr} \right.\)
Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) .
Lời giải chi tiết:
\(y = \sin \left( {x - {\pi \over 4}} \right) + 1\)
LG b
LG b
\(y = \cos 2x - 1\)
Phương pháp giải:
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\)
\(\left\{ \matrix{
x' = x + {\pi \over 4} \hfill \cr
y' = y + 1 \hfill \cr} \right.\)
Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) .
Lời giải chi tiết:
\(y = \sin 2x,\) (do \(y = \cos 2\left( {x - {\pi \over 4}} \right) = \sin 2x\))
LG c
LG c
\(y = 2\sin \left( {x + {\pi \over 4}} \right)\)
Phương pháp giải:
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\)
\(\left\{ \matrix{
x' = x + {\pi \over 4} \hfill \cr
y' = y + 1 \hfill \cr} \right.\)
Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) .
Lời giải chi tiết:
\(y = 2\sin x + 1\)
LG d
LG d
\(y = \cos \left| x \right| - 1\)
Phương pháp giải:
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\)
\(\left\{ \matrix{
x' = x + {\pi \over 4} \hfill \cr
y' = y + 1 \hfill \cr} \right.\)
Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) .
Lời giải chi tiết:
\(y = \cos \left| {x - {\pi \over 4}} \right|\)
Tải 10 đề kiểm tra 15 phút - Chương II - Hóa học 11
C
Chuyên đề III. Một số yếu tố vẽ kĩ thuật
Unit 3: Global warming & Ecological systems
Chuyên đề 1. Phát triển kinh tế và sự biến đổi môi trường tự nhiên
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11