Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Đề bài
Tìm các số thực p và q sao cho hàm số
\(f(x) = x + p + {q \over {x + 1}}\)
Đạt cực đại tại điểm \(x = - 2{\rm{ }}\) và \({\rm{ }}f\left( { - 2} \right) = - 2\).
Lời giải chi tiết
Ta có
\(f'(x) = 1 - {q \over {{{\left( {x + 1} \right)}^2}}}\) với mọi \(x \ne - 1\)
- Nếu \(q \le 0\) thì \(f'(x) > 0\) với mọi \(x \ne - 1\).
Do đó hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
Hàm số không có cực đại, cực tiểu.
- Nếu q > 0 thì phương trình
\(f'(x) = {{{x^2} + 2x + 1 - q} \over {{{\left( {x + 1} \right)}^2}}} = 0\)
Có hai nghiệm phân biệt \({x_1} = - 1 - \sqrt q \) và \({x_2} = - 1 + \sqrt q \)
Hàm số đạt cực đại tại điểm \({x_1} = - 1 - \sqrt q \) và đạt cực tiểu tại điểm \({x_2} = - 1 + \sqrt q \).
Hàm số đạt cực đại tại điểm x = -2 khi và chỉ khi
\( - 1 - \sqrt q = - 2 \Leftrightarrow \sqrt q = 1 \) \(\Leftrightarrow q = 1\)
\(f(-2) = - 2 \Leftrightarrow p = 1\)
CHƯƠNG 8. PHÂN BIỆT MỘT SỐ CHẤT VÔ CƠ CHUẨN ĐỘ DUNG DỊCH
Chương 6: Kim loại kiềm, kim loại kiềm thổ, nhôm
Unit 9: Deserts - Sa Mạc
Chương 9. Hóa học với các vấn đề kinh tế, xã hội, môi trường
Luyện đề đọc hiểu - THPT